

Phase II Environmental Site Assessment Report Tyson Foods 9943 Old Ocean City Boulevard Berlin, Maryland 21811

Prepared for:

Town of Berlin 10 William Street Berlin, Maryland 21811

Prepared by:

EA Engineering, Science, Technology, Inc., PBC 225 Schilling Circle, Suite 400 Hunt Valley, Maryland 21031 (410) 584-7000

July 2015 EA Project Number: 1470408

Phase II Environmental Site Assessment Report Tyson Foods 9943 Old Ocean City Boulevard Berlin, Maryland 21811

Prepared for:

Town of Berlin 10 William Street Berlin, Maryland 21811

Prepared by:

EA Engineering, Science, Technology, Inc., PBC 225 Schilling Circle, Suite 400 Hunt Valley, Maryland 21031 (410) 584-7000

James M. Huller

James Hulbert Date
Project Manager

P. C. L. C. 7/23/2015

Pete Lekas Date

Senior Technical Review

TABLE OF CONTENTS

<u>Page</u>
LIST OF FIGURESii
LIST OF TABLESii
LIST OF ACRONYMS AND ABBREVIATIONSiii
EXECUTIVE SUMMARYv
1.0 INTRODUCTION
2.0SITE AND PROJECT BACKGROUND2-12.1Site Location and Description2-12.2Site History2-12.3Prior Environmental Reports2-2
3.0 FIELD AND ANALYTICAL INVESTIGATION METHODS 3-1 3.1 Soil Sampling Investigation 3-1 3.1.1 Methodology 3-1 3.2 Groundwater Sampling Investigation 3-2 3.2.1 Methodology 3-2 3.3 Lagoon Soil and surface water Sampling Investigation 3-2 3.3.1 Methodology 3-3 3.3.2 Sample Identification 3-3 3.3.3 Chain of Custody 3-3 3.4 Investigative-Derived Waste 3-4 4.0 RESULTS AND DISCUSSION 4-1 4.1 Soil Geology 4-1 4.2 Soil Analytical Results 4-1
4.3 Groundwater Analytical Results
5.0 DISCLAIMER 6-1
7.0 REFERENCES
APPENDIX A: FIGURES APPENDIX B: TABLES APPENDIX C: PHOTOGRAPH LOG APPENDIX D: SOIL BORING LOGS APPENDIX E: GROUNDWATER PURGE LOGS APPENDIX F: ANALYTICAL RESULTS

Page ii July 2015

LIST OF FIGURES

(Located in Appendix A)

<u>Number</u>		<u>Title</u>
1	Site Location	
2	Sample Location	

LIST OF TABLES

(Located in Appendix B)

<u>Number</u>	<u>Title</u>
1	Soil Analytical Summary Table
2	Groundwater Analytical Summary Table
3	Surface Water Analytical Summary Table

LIST OF ACRONYMS AND ABBREVIATIONS

μg/kg Microgram(s) per kilogram

ALWI Advanced Land and Water, Inc.

amsl Above mean sea level

AST Aboveground Storage Tank

ATC Anticipated Typical Concentration

bgs Below Ground Surface BOD Biological Oxygen Demand

BTEX Benzene, toluene, ethylene, and xylene

°C Degrees Celsius

DPT Direct Push Technology DRO Diesel Range Organics

EA Engineering, Science, and Technology, Inc., PBC

ESA Environmental Site Assessment

F&R Froehling & Robertson, Inc.

ft Foot or Feet

GPR Ground-Penetrating Radar GPS Global Positioning System

ID Identification

IDW Investigative-Derived Waste

MCL Maximum Contaminant Level

MDE Maryland Department of Environment

mg/kg Milligram(s) per kilogram

MPN/100 ml Most Probable Number per 100 milliliters MS/MSD Matrix Spike/Matrix Spike Duplicate

MTBE Methyl-tert-butyl ether

NFRD No Further Requirements Determination

OCP Oil Control Program

PCB Polychlorinated Biphenyl PID Photoionization Detector

ppb Parts per billion PPL Priority Pollutant List

LIST OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

REC Recognized Environmental Condition

QA Quality Assurance QC Quality Control

SVOC Semi-volatile Compound

TIC Tentatively Identified Compound

TKN Total Kjehldahl Nitrogen

TPH Total Petroleum Hydrocarbons

TSS Total Suspended Solids

USEPA United States Environmental Protection Agency

USGS United States Geological Survey UST Underground Storage Tank

VCP Voluntary Cleanup Program VOC Volatile Organic Compound

Page v July 2015

EXECUTIVE SUMMARY

EA Engineering, Science, and Technology, Inc., PBC (EA) was contracted by the Town of Berlin to perform a Phase II Environmental Site Assessment (ESA) of the former Tyson Foods Facility located at 9943 Old Ocean City Boulevard (Site) located in Berlin, Maryland 21811.

The scope of work for this Phase II investigation was developed based on a review of available historic investigations and environmental reports for the Site. The Site has a recorded Activity and Use Limitation for industrial use. The goal of this investigation is to evaluate the potential for the historical Site uses to have impacted the environmental integrity of areas of the Site not addressed by previous investigations in order to meet the Maryland Department of the Environment (MDE) requirements to revise the Activity and Use Limitation for proposed future recreational use.

EA performed the soil, groundwater, and surface water sampling in June 2015. This Phase II Report details the field investigation methods; provides discussion of laboratory results, and provides conclusions based upon all site investigation efforts performed.

The results of all the Site investigation efforts confirm the following:

- Concentrations of arsenic were reported slightly greater than the MDE Residential Soil Clean-up Standards throughout the Site in surface and subsurface samples. However, no results were reported that exceeded the MDE Anticipated Typical Concentrations (ATC).
- Benzo(a)pyrene and benzo(a)anthracene were reported in a single surface sample located adjacent to the former maintenance room greater than the MDE Residential Soil Clean-up Standards. Based on the results from prior investigations and the proposed recreational land use, the levels of PAHs observed are not anticipated to represent an exposure concern for the recreational user.
- E.coli and enterococci were reported in surface water sample SW-03, located at the northernmost edge of the lagoons, greater than the MDE Recreational Use Criteria.

Based on review of the soil and groundwater analytical data it appears that there are no analytes of concern detected at concentrations or frequency that would represent a human health concern for future recreational users of the Site. Concentrations of E. coli and enterococci reported at the northernmost edge of the lagoons indicate an exposure concern associated with the recreational use of the lagoon water.

Page 1-1 July 2015

1.0 INTRODUCTION

EA Engineering, Science, and Technology, Inc., PBC (EA) was contracted by the Town of Berlin to perform a Phase II Environmental Site Assessment (ESA) of the former Tyson Foods Facility located at 9943 Old Ocean City Boulevard (Site) located in Berlin, Maryland 21811.

1.1 PURPOSE AND SCOPE

The scope of work for this Phase II investigation was developed based on a review of available historic investigations and environmental reports for the Site. The Site has a recorded Activity and Use Limitation for industrial use. The goal of this investigation is to evaluate the potential for the historical Site uses to have impacted the environmental integrity of the Site not addressed by previous investigations in order to meet the Maryland Department of the Environment (MDE) requirements to revise the Activity and Use Limitation for proposed future recreational use.

Field activities conducted at the Site consisted of the following:

- Direct push technology (DPT) was utilized by EA and Green Services, Inc. to advance seven soil borings throughout the Site to a maximum depth ranging from 8-20 feet (ft) below ground surface (bgs). This effort yielded 14 soil samples (plus two duplicates).
- Two of the borings were converted to temporary groundwater wells located adjacent to the lagoons for the collection of two groundwater samples (plus one duplicate).
- Hand augering was performed by EA to advance three soil borings in the lagoons on the Site to a maximum depth of 5 ft bgs. This effort yielded six soil samples.
- Three surface water samples were collected from the lagoons.

This Phase II ESA Report provides a detailed synopsis of the soil, groundwater, and surface water sampling results collected during the June 2015 sampling event performed at the Site.

Page 2-1 July 2015

2.0 SITE AND PROJECT BACKGROUND

2.1 SITE LOCATION AND DESCRIPTION

The Site consists of three adjoining parcels of land located at 9943 Old Ocean City Boulevard within Worcester County in Berlin, Maryland. Identified as Map 0025, Grid 0009, and Parcels 0052, 0057, and 0410, the Site is currently comprised of approximately 56.72 acres and is zoned I-2, heavy industrial and municipal. The Site location is illustrated in Figure 1. The Site is bordered by an on ramp to Route 113 to the north, commercial properties to the south, Route 113 to the west, and a railroad track, beyond which is vacant land, to the east.

The Site is located on the United States Geological Survey (USGS) Berlin, Maryland 7.5-minute topographic quadrangle map, as shown on Figure 1, Site Location, in Appendix A. The elevation of the Site is relatively flat at approximately 25 ft above mean sea level (amsl), with the exception of the lagoons. The nearest surface water feature shown on the topographic map is Kitts Branch which flows through the northern portion of the Site.

Review of the Web Soil Survey (United States Department of Agriculture, Natural Resources Conservation Service, http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurveny.aspx) indicates that the southwest portion of the subject site is classified as the Urban Land Complex consists of areas where much of the soil surface is covered with asphalt, concrete, buildings, or other impervious material. The majority of the southern portion of the subject site is classified as the Mullica-Berryland complex, which is characterized by a 0 to 2 percent slope and is very poorly drained mucky sandy loam weathered from sandy eolian deposits and/or fluviomarine sediments.

The remainder of the subject site is classified as: the Urban land-Udorthents Complex, which is characterized by a 0 to 5 percent slope, are 50% Urban Land and 35% well-drained sandy loams weathered from fluviomarine deposits; the Woodstown sandy loam, which is characterized by 2 to 5 percent slopes and are moderately well-drained sandy loams weathered from loamy fluviomarine deposits; and the Udorthents, which is characterized by 0 to 5 percent slopes and are well-drained loamy soils weathered from fluviomarine deposits.

2.2 SITE HISTORY

The Site operated as a poultry processing plant as of the mid-1940s. In 1965, the Site was purchased by the Ralston Purina Company, which further developed the Site with construction of a poultry processing building, rendering plant addition, a scale house, a shop, an ice storage, additions to the plant, a garage/office space, a cooling shed, and an accessory structure to cover the wastewater treatment plant. Circa 1972, Chesapeake Foods, Inc. (which later became Tyson Chicken, Inc.) purchased the Site, with further development that included construction of a new processing front, employee facility, office building, refrigeration facility, feather dryer enclosure, cooler expansion, 4-bay live haul building, cold storage cooler, lime silo, addition to the live haul shed, secondary clarifier for the wastewater treatment plant, and additions to the plant on Parcel 0057, and construction of a process water upgrade fire pump house with a 150,000-gallon tank on Parcel 0052. In 2005, Berlin Properties North, LLC purchased the Site which at the time also included Parcel 1705; however, Parcel 1705 was purchased by the County Commissioners of

July 2015

Worcester County, Maryland in 2008. From 2008 through 2011, five buildings on Parcel 0057 and the wastewater treatment structure on Parcel 0052 were demolished.

The Site was issued a discharge permit State No. 79-DP-0375 to discharge chicken processing and rendering wastes after treatment to Kitts Branch. The permit noted that stormwater runoff did not enter the treatment system. The permit required testing for biological oxygen demand (BOD), total suspended solids (TSS), oil and grease, dissolved oxygen, residual chlorine, fecal coliform, pH, total kjehldahl nitrogen (TKN), nitrate, ammonia, and phosphate.

2.3 PRIOR ENVIRONMENTAL REPORTS

Environmental investigations of the Site and surrounding area include groundwater sampling, soil sampling, lagoon discharge sampling, air sampling, remedial activities, and Phase I and II ESAs. A summary of the relevant prior Site investigations is provided below.

Bureau of Air Quality and Noise Control Odor Complaint October 1977

Several odor complaints were received, and after a review of operations it was determined that the acid and caustic Ceilcote scrubber would be put back into use, and an additional scrubber would be installed.

Department of Health and Mental Hygiene Corrective Order No. 84-09-01 September 1984

Chesapeake Foods, Inc. was found to be in violation of Maryland's Air Quality Act, Health-Environmental Article 2-101 under the Maryland Code.

Department of the Environment Air Management Administration Operating Permit No. 23-00052 October 1990

Permit issued regarding the feather cookers, meat cookers, and feather dryer. A note was made that the lagoons that went septic in 1989 were still a source of odor.

MDE Emissions Certification January 2001

Tyson Foods, Inc. was required to certify air emissions which included particulate matter sulfur oxides, nitrogen oxides, carbon monoxide, and volatile organic compounds (VOCs).

MDE Consent Order #CO-90-0162, Hudson Foods, Inc. February 1990

MDE stated that Hudson Foods, Inc. exceeded the total suspended solids and biochemical oxygen demand effluent limitations on multiple occasions from November 1987 through November 1988. Hudson Foods, Inc. was ordered to ensure compliance and fined \$7,500.

United States Environmental Protection Agency (USEPA) Court Settlement September 1998

A government complaint alleged water pollution violations from Hudson Foods, Inc. poultry processing and rendering plant in Berlin, Maryland which included discharging wastewater with

Page 2-3 July 2015

illegal levels of fecal coliform, phosphorous, nitrogen, ammonia, and other pollutants into Kitts Branch. Hudson Foods, Inc. was fined \$4,000,000 and an additional \$2,000,000 to address pollution. This plan included installation of denitrification equipment, add phytase enzyme to poultry feed, construct litter storage sheds to control nutrient runoff, a nutrient management plan project to assist local poultry growers, and apply alum to litter to reduce soluble phosphorous.

MDE Tyson Foods (PWSID#123-0052) Water System Inspection March 2000

MDE asked for a plan of action regarding benzene contamination in production well 1, to include a source identification of the benzene contamination, remediation of the contamination, treatment for well 1 if it remains in service, and plans for an alternate water supply if well 1 is taken out of service. The inspection also determined the water was corrosive (pH of 5.6) and the hydropneumatic tank was in poor condition.

MDE Letter regarding VOCs detected in subject site monitoring wells January 2001

Drinking water sample reported presence of benzene (4.9 parts per billion [ppb]), ethylbenzene (0.8 ppb), toluene (6.8 ppb), xylene (2.2 ppb), and methyl-tert-butyl ether (MTBE) (5.2 ppb) in Well 1. It was recommended to closely monitor Well 1, and that further use of the well could result in a water quality violation.

Source Water Assessment and Wellhead Protection Plan Including Production Wells Serving the Town of Berlin and the Tyson Foods Berlin Plan May 2004

Advanced Land and Water, Inc. (ALWI) reviewed groundwater quality records to conduct an assessment of groundwater susceptibility. ALWI concluded that Tyson's wells were susceptible to benzene and nitrates, which had concentrations that exceeded the Maximum Contaminant Level (MCL). Other gasoline constituents were detected in the Tyson wells that did not exceed the MCLs: ethylbenzene, toluene, and MTBE. Using the groundwater data, ALWI identified three potential offsite sources of the benzene contamination, which include the commercial property between Tyson and Berlin Well No. 2, Seitz Automotive, and Cheers/Mobil. Additionally, ALWI identified potential point sources of nitrate contamination to the aquifer as the wastewater storage lagoon and other private wells were not properly sealed. ALWI also recommended best management planning for Tyson in its protocols for handling, storing, and disposing of food processing and poultry waste, which may have led to groundwater infiltration of nitrates.

MDE Letter regarding Case No. 93-0030 June 2004

Two underground storage tanks (USTs) (2,000-gallon diesel and 3,000-gallon gasoline) were abandoned in place on 06 July 1992. A soil sample was collected from beneath each tank and a groundwater sample was collected from a well installed between the tank field and dispensing island. The groundwater sample detected benzene, toluene, ethylene, and xylenes (BTEX) at 4 ppb. The case was closed on 23 March 1994; however, it was reopened for review on 13 September 1999 due to BTEX detected at 15.9 ppb and MTBE detected at 4.1 ppb in production water supply well no. 1. Subsequently, Case No. 2000-0487-WO was assigned, and on 18

Page 2-4 July 2015

October 2000 monitoring well MW-1 was resampled. Ethylbenzene was detected at a trace level. Therefore, MDE granted permission to abandon the monitoring well which was completed on 19 December 2003.

Phase II Limited ESA Former Tyson Foods Processing Plant December 2004

A Phase II Limited ESA was performed to eliminate the Tyson Berlin Plant as the potential source of the trace benzene and MTBE contamination detected in groundwater wells located in the area of the Tyson Plant. Twenty groundwater monitoring wells were installed and a ground penetrating radar (GPR) study was performed to identify the presence of subsurface USTs. Soil samples reported VOCs, BTEX, and MTBE below the quantitation limits. Benzene was detected in two monitoring wells at or above the MCLs.

Froehling & Robertson, Inc. (F&R) determined that based on the information gathered during the assessment, the results of the previous assessments, and site history that it is unlikely that the Tyson property is the source of the contamination and recommended that the MDE Oil Control Program (OCP) close all open cases against the subject site.

Phase I ESA Tyson Foods Facility Berlin, Maryland March 2004

Hynes & Associates identified the following recognized environmental conditions (RECs) and provided recommendations:

- Several aboveground storage tanks (ASTs) were observed on the subject site which contained waste oil, #6 heating oil, hydraulic fluid, and diesel. Staining was also observed around the diesel ASTs. A recommendation was made to perform an evaluation of the subsurface near the two diesel ASTs and associated fuel dispenser to evaluate for the presence of petroleum contamination.
- No official documentation was available regarding the removal of the 12,000-gallon diesel fuel UST; however, documentation indicated the UST was removed in 1998. A recommendation was made to determine the former location of the UST, and perform a limited subsurface evaluation at that location to determine whether the subsurface has been impacted.
- A UST of unknown size was discovered on 05 August 2003 and abandoned in place. Accordingly, MDE closed Case No. 2004-0232 WO on 29 December 2003. No other information was available regarding the tank closure, so a recommendation was made that a file review be performed to determine whether any potential environmental conditions exist in the area of the UST.
- Eight MDE case files were identified that related to the Tysons facility. Seven are listed as closed. A recommendation was made to review the Well Head Protection report released by the Town of Berlin to determine if additional recommendations were required.

Page 2-5 July 2015

Tyson Foods was issued an Oil Operations Permit on 24 June 2003, on the condition that
certain issues were fixed within 60 days. At the time of the Phase I ESA, these issues had
not been addressed. A recommendation was made that written documentation regarding
the completion of the conditions be provided and reviewed, and a follow up site visit be
made.

• The possible presence of an abandoned floor drain was observed inside the vehicle maintenance building. A recommendation was made that if a drain was abandoned, the discharge point of the drain be verified to determine whether a subsurface study was required.

Hynes & Associates also recommended that all chemical and petroleum products and the vessels used to store the products should be recycled or disposed of in accordance with applicable regulations, and that records be reviewed to evaluate the polychlorinated biphenyl (PCB) content of the operating transformers observed on the property.

Voluntary Cleanup Program (VCP) Site Assessment October 2005

In response to the Phase II ESA performed by F&R, MDE proposed additional limited supplemental soil and groundwater samples to fulfill the principles for a Phase II ESA. Trace metals and low-level VOCs were identified in the soil samples; however, none of the target compounds that were detected above the Non-Residential Cleanup Standards. The highest concentration of tentatively identified compounds (TICs) in the library search compounds was in the vicinity of the wastewater treatment plant. These compounds included palmitic acid, myristic acid, and stearic acid. Sulfur was identified in five of the soil samples, with the highest concentration in the vicinity of the abandoned 2,000-gallon heating oil USTs. No target compounds were reported above the laboratory quantitation limits for groundwater. The TICs library search did reveal concentrations of propane, butane, and tetrahydrofuran; however, there are currently no established reporting standards for these compounds.

Based on the findings and data gathered as part of the Site Assessment, F&R recommended that Tyson request a Notice of Compliance letter be issued for the subject site stating no further action is required. Additionally, as part of the Site Assessment the USTs, ASTs, and transformers were inventoried at the subject site and are provided in the following tabular summaries:

MDE VCP No Further Requirements Determination (NFRD) Letter November 2005

MDE determined there are no further requirements related to the investigation or remediation of controlled hazardous substances or oil identified at the subject site provided the property is used for unrestricted commercial (Tier 2A) or unrestricted industrial (Tier 3A) purposes in the future.

MDE VCP Application for Unrestricted Residential Use December 2005

Berlin Properties North, LLC submitted a VCP application that requested unrestricted residential use at the subject site. MDE requested supplemental soil and groundwater samples focused on

July 2015

EA Engineering, Science, and Technology, Inc., PBC

the portions of the subject site proposed for residential development that were not previously sampled under a commercial use scenario, such as the wastewater treatment lagoons. Additional samples were requested in the vicinity of the former truck scale, underneath the existing #6 oil AST, within the former boiler room in the main processing plant, and within the former maintenance room in the main processing plant for a total of 20 soil samples and two groundwater samples.

Page 3-1 July 2015

3.0 FIELD AND ANALYTICAL INVESTIGATION METHODS

The purpose of this investigation was to evaluate the potential for the historical Site uses to have impacted the environmental integrity of areas of the Site not addressed by previous investigations. Information obtained as part of this investigation is intended to support potential future recreational use(s) of the Site. Field sampling activities conducted as part of this investigation were performed in June 2015. A photograph log is included in Appendix C.

3.1 SOIL SAMPLING INVESTIGATION

On 09 June 2015, DPT was utilized by EA and Green Services, Inc. to advance seven soil borings throughout the Site to a maximum depth ranging from 8-20 ft bgs. Present sampling locations were located via global positioning system (GPS) by EA and Green Services, Inc. prior to sampling and are presented in Figure 2.

- Three borings located adjacent to the lagoons to the northeast (SS-02), to the west (SS-03), and to the south (SS-06)
- One boring located near the former truck scales (SS-07)
- One boring located near the former #6 fuel oil AST (SS-08)
- One boring located within the former boiler room (SS-09)
- One boring located near the former maintenance room (SS-10)

SS-10 was collected from an area adjacent to the former maintenance room instead of underneath the concrete floor of the former maintenance room since the floor consisted of an approximate 8-inch thick concrete slab, beneath which was an approximate 3-ft cinder block foundation. The building is illustrated in the Photograph Log in Appendix C.

3.1.1 Methodology

The investigative measures utilized for soil sample collection included using a truck-mounted DPT to advance soil cores, onsite documentation and recordkeeping, and laboratory analysis. These activities were performed on 09 June 2015.

Prior to initiation of the soil sampling effort, EA contacted Miss Utility to perform municipal utility mark out of the Site. Each boring was advanced by a hydraulically driven, 4-ft-long, stainless-steel barrel sampler (2-inch interior diameter) lined with a new, dedicated clean plastic liner for each 4-ft interval. Soil cores were collected continuously from grade to provide site lithology and characterization information. Soil cores were also screened visually as well by photoionization detector (PID) to detect the presence of VOCs. The results of the field screening were recorded in the field book. A surface sample from the 0-1 ft interval and a subsurface sample from the 4-5 ft interval were collected from the plastic liners from each boring, homogenized in a plastic dedicated bag, and then transferred to a laboratory-provided sample jar. Copies of the soil boring logs are provided in Appendix D.

All soil samples were analyzed for semi-volatile compounds (SVOCs) via USEPA method 8270D and Priority Pollutant List (PPL) metals via USEPA method 6010C and 7471B.

Additionally, SS-03, SS-07, SS-09, and SS-10 were analyzed for VOCs via USEPA method 8260B, SS-08, SS-09, and SS-10 were analyzed for total petroleum hydrocarbons (TPH) – diesel range organics (DRO) via USEPA method 8015, and SS-02 was analyzed for pesticides via USEPA method 8081A and herbicides via USEPA method 8151A.

GROUNDWATER SAMPLING INVESTIGATION 3.2

Soil boring SS-06 was converted to temporary groundwater well GW-03 and SS-02 was converted to temporary groundwater well GW-04. The temporary groundwater well locations are presented in Figure 2.

3.2.1 Methodology

On 09 June 2015, the temporary groundwater wells were installed with a 5-ft screen set at the 14.32-19.32 ft bgs depth interval for GW-03, and the 9.6-14.6 ft bgs depth interval for GW-04. Groundwater samples were collected on 10 June 2015. Prior to sampling, the depth to groundwater and total well depth were collected from each well. The interface probe was also used prior to sampling to record any presence of free product in the well. Groundwater samples were collected using low-flow sampling procedures with a peristaltic pump and disposable polyethylene tubing. During groundwater sampling, water quality parameters were recorded in 4-minute intervals using a YSI 6200 water quality meter equipped with an inline flow-through cell. Dissolved metals were field-filtered using a 0.45 micron filter in-line with the tubing. Samples were collected in laboratory-provided containers and then transferred to a laboratoryprovided sample bottle. Copies of the well purge and sampling records are provided in Appendix E.

Groundwater samples were analyzed for VOCs via USEPA method 8260B and dissolved metals via USEPA method 6010C and 7470A.

LAGOON SOIL AND SURFACE WATER SAMPLING INVESTIGATION 3.3

On 10 June 2015, a dedicated hand auger was utilized by EA to advance three soil borings throughout the lagoons to a maximum depth of 5 ft bgs. Lagoon soil samples included:

- One sample located on the north side within the northern lagoon (SS-01)
- One sample located on the east side within the middle lagoon (SS-04)
- One sample located on the west side within the southern lagoon (SS-05)

Additionally, three surface water samples were collected from the south lagoon (SW-01), the middle lagoon (SW-02), and the north lagoon (SW-03). Sampling locations were located via GPS by EA prior to sampling and are presented in Figure 2 in Appendix A.

Page 3-3 July 2015

3.3.1 Methodology

The investigative measures utilized for soil sample collection included using a hand auger to advance soil borings, onsite documentation and recordkeeping, and laboratory analysis. These activities were performed on 10 June 2015.

Each boring was collected using a dedicated hand auger. Soil was also screened visually as well by PID to detect the presence of VOCs. The results of the field screening were recorded in the field book. A surface sample from the 0-1 ft interval and a subsurface sample from the 4-5 ft interval were collected, homogenized in a plastic dedicated bag, and then transferred to a laboratory-provided sample jar.

Surface water samples were collected using dedicated, sterile laboratory containers. The container was dipped into the surface water of the lagoon and then sealed.

Soil samples were analyzed for SVOCs via USEPA method 8270D and PPL metals via USEPA method 6010C and 7471B. Surface water samples were analyzed for enterococci and E. coli.

3.3.2 Sample Identification

Samples collected for analysis were recorded in field notes and kept on file for reference. Each sample collected during field activities was given unique sample identification (ID). The sample identification included the project number, sample location, and depth of sample. For example:

SS-01-0-1 represents Soil Sample – designated location number – depth interval

GW-03 represents groundwater sample – designated location number

SW-01 represents surface water – designated location number

Quality assurance/quality control (QA/QC) samples were also given unique sample designations. Field personnel recorded designations of field samples corresponding to each QA/QC sample on the boring logs and in the field notebooks, but not on the chain-of-custody and sample container. Figure 2 illustrates soil, groundwater, and surface water sample designations, and locations for each sample.

3.3.3 Chain of Custody

Samples were shipped from a Fed-Ex under strict chain of custody to Empirical Laboratories, LLC of Nashville, Tennessee for analysis. Samples were analyzed with standard turn-around times of 10 days from receipt of samples. Surface water samples were dropped off at Chesapeake Labs, Inc. of Salisbury, Maryland for analysis.

Chain-of-custody forms were initiated by the sampler at the time samples were collected. The coolers were labeled, the chain-of-custody was placed inside, and the coolers were secured with custody seals. Upon receipt and opening of the coolers, the laboratory sample custodian

measured and recorded the temperature inside the coolers, which did not exceed 4-degrees Celsius (°C).

3.3.4 Quality Assurance and Quality Control

QA/QC samples collected as part of the soil sampling activities consisted of:

- Two blind soil duplicate samples analyzed for SVOCs and PPL metals.
- One blind soil duplicate sample analyzed for TPH-DRO and VOCs.
- One blind groundwater sample analyzed for VOCs.
- One soil matrix spike/matrix spike duplicate (MS/MSD) analyzed for SVOCs, PPL metals, TPH-DRO, and VOCs.
- One groundwater MS/MSD analyzed for VOCs.
- One trip blank analyzed for VOCs.

The locations of the duplicate QA/QC samples were collected are shown in summary tables located in Appendix B. The trip blank reported a slight detection of methylene chloride; however, remaining analytes were less than the method detection limit. The relative percent diference for soil and groundwater duplicates were less than 20%, which is within the project data quality objectives.

3.4 INVESTIGATIVE-DERIVED WASTE

Investigative-derived waste (IDW) generated onsite consisted of soils, used expendables (personal protective equipment, paper towels), and purged groundwater. Used expendables were bagged and disposed of offsite as municipal waste. Soils from the DPT borings were used to backfill each hole and bentonite was used to fill each boring flush with the existing ground surface. Purged groundwater was disposed of in the onsite lagoons.

Page 4-1 July 2015

4.0 RESULTS AND DISCUSSION

Laboratory samples were compared against the MDE Residential Soil Clean-up Standard for Soil and the MDE Anticipated Typical Concentrations (ATCs) for Eastern Maryland for soil and groundwater. The MDE does not publish generic cleanup values for recreational land use, therefore the analytical results were compared to the MDE Generic Residential Cleanup Goals. The recreational cleanup goals will depend on the nature and designation of recreational activities. These goals are expected to be less conservative than the Residential Soil Cleanup Standards; therefore, analytical results that are below the residential criteria would also fall below the recreational goals. The surface water samples were compared against the MDE Recreational Water Quality Criteria. A summary of the analytical results is presented in Tables 1, 2, and 3 in Appendix B. A complete laboratory analytical report is presented in Appendix F.

4.1 SOIL GEOLOGY

Soils in the vicinity of the lagoons consisted of orange and grey sand-silt mixtures with organic black clayey silts above the water table, and greyish white sands with silt below the water table. The soils by the processing plant consisted of mainly brown, grey, and orange sands, with some silt and clay lenses. Photographs illustrating soils are included in the Photograph Log in Appendix C.

4.2 SOIL ANALYTICAL RESULTS

<u>PPL Metals</u>: Of the 14 surface and subsurface samples analyzed from seven locations (SS-02, SS-03, SS-06, SS-07, SS-08, SS-09, SS-10), 13 samples (all except SS-09-0-1) reported concentrations of arsenic ranging from 0.755 to 2.18 milligrams per kilogram (mg/kg) in surface soils which exceeded the MDE Residential Soil Clean-up Standard (0.67 mg/kg), but were less than the ATC for Eastern Maryland (3.6 mg/kg). No other PPL metals exceeded the MDE Residential Soil Clean-up Standards or ATCs for Eastern Maryland.

<u>Pesticides</u>: SS-02 surface and subsurface samples were analyzed for pesticides/herbicides. The two samples reported detections less than the MDE Residential Soil Clean-up Standards.

<u>SVOCs</u>: Of the 14 surface and subsurface samples analyzed from seven locations (SS-02, SS-03, SS-06, SS-07, SS-08, SS-09, SS-10), one sample (SS-10-0-1) reported concentrations of benzo(a)anthracene at 248 micrograms per kilogram (μ g/kg), and benzo(a)pyrene at 244 μ g/kg, which exceeded the MDE Residential Soil Clean-up Standards of 220 and 22 μ g/kg, respectively. No other SVOCs exceeded the MDE Residential Soil Clean-up Standards.

<u>VOCs</u>: Eight surface and subsurface samples analyzed from four locations (SS-03, SS-07, SS-09, SS-10) reported detections less than the MDE Residential Soil Clean-up Standards.

<u>TPH-DRO</u>: Six surface and subsurface samples analyzed from three locations (SS-08, SS-09, SS-10) reported detections less than the MDE Residential Soil Clean-up Standards. Detections of TPH-DRO were higher at the subsurface in SS-08, and were higher at the surface at SS-09 and SS-10.

July 2015

4.3 GROUNDWATER ANALYTICAL RESULTS

Groundwater results for GW-03 reported detections of dissolved arsenic, dissolved lead, and acetone less than the MDE Type I and II Aquifers Groundwater Standards for metals and VOCs. All remaining analytes for GW-03 were reported below the Method Detection Limit. Groundwater results for GW-04 reported detections of acetone less than the MDE Type I and II Aquifers Groundwater Standards for VOCs. All remaining analytes for GW-04 were reported below the Method Detection Limit.

4.4 LAGOON SOIL GEOLOGY

A total of three sample locations were collected to evaluate the soil/sediment within the lagoons (SS-01, SS-04, SS-05).

The sediments in the smaller southern lagoon consisted of 6-12 inches of light grey sandy sludge-like material. The subsurface soil consisted of a denser light grey clayey silt with sand. Depth of the water was approximately 2-3 ft along the edge, with a gradual incline to approximately 8 ft in the middle of the lagoon. The water quality in the smaller southern lagoon was clear.

The sediments in the middle lagoon consisted of approximately 12 inches of brown sandy sludge-like material with wood debris. The subsurface soil consisted of a brown to dark brown silty sand. The sediments in the northern lagoon consisted of approximately 30 inches of brown sandy sludge-like material, with a strong fecal odor. The subsurface soil consisted of a light brown silty sand. Depth of water was approximately 1-2 ft along the edge of the middle and southern lagoons, with a maximum depth of 4 ft towards the middle of the lagoons. The sides of the lagoons were heavily vegetated with woody vegetation. Additionally, the bottom of the lagoon towards the center appeared to be hard. Photographs illustrating lagoon soils are included in the Photograph Log in Appendix C.

4.5 LAGOON SOIL AND SURFACE WATER ANALYTICAL RESULTS

<u>PPL Metals</u>: Of the six surface and subsurface samples analyzed from three locations (SS-01, SS-04, SS-05), the surface and subsurface samples from SS-01 and SS-05 reported concentrations of arsenic ranging from 0.926 to 1.18 mg/kg in surface soils which exceeded the MDE Residential Soil Clean-up Standard (0.67 mg/kg), but were less than the ATC for Eastern Maryland (3.6 mg/kg). No other PPL metals exceeded the MDE Residential Soil Clean-up Standards or ATCs for Eastern Maryland.

<u>SVOCs</u>: Of the six surface and subsurface samples analyzed from three locations (SS-01, SS-04, SS-05), all results were reported less than method detection limit.

Of the three surface water samples collected, SW-03 had results of E. coli and enterococci at 261.3 and 103.1 most probable number per 100 milliliters (MPN/100 ml), respectively, which is greater than the MDE Recreational Use Criteria of 235 and 61 MPN/100 ml, respectively. SW-02 reported detections of E. coli and enterococci less than the MDE Recreational Use Criteria at 16.9 and 19.1 MPN/100 ml, respectively.

Page 5-1 July 2015

5.0 CONCLUSIONS

The soil, groundwater, and surface water sample data obtained in the June 2015 investigation was evaluated to determine potential impacts for recreational use to the Site.

The results of all the Site investigation efforts confirm the following:

- Concentrations of arsenic were reported slightly greater than the MDE Residential Soil Clean-up Standards throughout the Site in surface and subsurface samples. However, no results were reported that exceeded the MDE ATCs.
- Benzo(a)pyrene and benzo(a)anthracene were reported in a single surface sample located adjacent to the former maintenance room greater than the MDE Residential Soil Clean-up Standards. Based on the results from prior investigations and the proposed recreational land use, the levels of PAHs observed are not anticipated to represent an exposure concern for the recreational user.
- E.coli and enterococci were reported in surface water sample SW-03, located at the northernmost edge of the lagoons, greater than the MDE Recreational Use Criteria.

Based on review of the soil and groundwater analytical data it appears that there are no analytes of concern detected at concentrations or frequency that would represent a human health concern for future recreational users of the Site. Concentrations of E. coli and enterococci reported at the northernmost edge of the lagoons indicate an exposure concern associated with the recreational use of the lagoon water.

Page 6-1 July 2015

6.0 DISCLAIMER

EA does not warrant that there were no toxic or hazardous materials or contamination, nor does EA accept any liability if such were found at some future time, or could have been found if sampling or additional studies were conducted. EA does not assume responsibility for other environmental issues that may be associated with this subject property.

In view of the rapidly changing status of environmental laws, regulations, and guidelines, EA cannot be responsible for changes in laws, regulations, or guidelines which occur after the study has been completed and which may affect the subject property.

7.0 REFERENCES

- Advanced Land and Water, Inc. (ALWI). 2004. Source Water Assessment and Wellhead Protection Plan Including Production Wells Serving the Town of Berlin and the Tyson Foods Berlin Plant. 27 May.
- Bureau of Air Quality and Noise Control. 1977. Odor Complaint. 04 October.
- Department of Health and Mental Hygiene. 1984. Corrective Order No. 84-09-01. 11 September.
- EA Engineering, Science, and Technology, Inc. Draft Phase I Environmental Site Assessment for Tyson Foods, 9943 and 10009 Old Ocean City Boulevard, Berlin, Maryland 21811. June.
- Froehling & Robertson, Inc. (F&R). 2004. Phase II Limited Environmental Site Assessment Former Tyson Foods Processing Plant. 17 December.
- Hynes & Associates. 2004. Phase I Environmental Site Assessment Tyson Foods Facility Berlin, Maryland. 19 March.
- Maryland Department of the Environment (MDE). 1990. Consent Order #CO-90-0162, Hudson Foods, Inc. 13 February.
- MDE Air Management Administration. 1990. Operating Permit No. 23-00052. 01 October.
- MDE. 2000. Tyson Foods (PWSID#123-0052) Water System Inspection. 08 March.
- MDE. 2001. Emissions Certification. 11 January.
- MDE. 2001. Letter regarding VOCs detected in subject site monitoring wells. 11 January.
- MDE. 2004. Letter regarding Case No. 93-0030. 07 June.
- MDE. 2005a. Letter regarding VCP No Further Requirements Determination. 03 November.
- MDE. 2005c. Letter regarding VCP Application for Unrestricted Residential Use. 22 December.
- MDE. 2008. State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater. Interim Final Guidance (Update No. 2.1). June.
- MDE. 2013. Facts About: EPA's New Water Quality Criteria for Beaches, Recreational Water Quality Criteria. January.

Page 7-2 July 2015

United States Department of Agriculture, Natural Resource Conservation Service. 2015. Web Soil Survey of Worcester County, Maryland. (http://websoilsurvey.nrcs.usda.gov/app/).

• United States Environmental Protection Agency (USEPA). 1998. Court Settlement. 14 September.

Appendix A

Figures

Appendix B

Tables

Table 1. Soil Analytical Summary

Parents Sample Date Samp	SS-05
Sample Date Coloratio Co	SS-05-4-5
Martic M	
Metals (Sw6010C and SW7471B) Sw7 Sw	6/10/2015
Metals SW091C and SW7471B) SW SW SW SW SW SW SW S	4-5 ft
Metals SW6010C and SW7471B) SW6010C and S	
Arsenic 0.67 3.6 mg/kg 0.926 J 1.66 J 0.832 J 1.19 J 0.755 J 0.986 J 1.01 J ND ND ND ND ND ND ND	
Assence	ND
	1.18 J
Cademium	0.257 J
Chromism	ND
Copper	13.0
Ead	3.69
Mercury 0.78 NS mg/kg ND ND ND 0.0344 ND ND 0.0176 ND ND ND ND Nickel 160 NS mg/kg 3.37 2.43 2.13 3.24 1.79 3.96 3.68 3.16 2.55 1.94 Sclerium 39 NS mg/kg ND ND ND ND ND ND ND N	6.70
Nickel 160	ND
Scientum 39 NS mg/kg ND ND ND ND ND ND ND N	3.90
Silver 39	ND
Thailium	ND
Zinc 2300 NS mg/kg 64.5 5.60 5.69 7.53 5.93 9.95 9.63 47.8 15.2 8.44	ND
Diesel Range Organics SW8015C Diesel Range Organics 230 NS mg/kg - - - - - - - - -	9.04
Diesel Range Organics 230 NS mg/kg	
Pesticides (SW8081B) 4,4-DDD	
4.4-DDD 2700 NS µg/kg ND ND	
4,4-DDT 1900 NS μg/kg 0.845 ND <	
alpha-BHC 100 NS µg/kg 0.377 BJ <td></td>	
alpha-Chlordane NS NS μg/kg ND ND <td></td>	
Chlordane 1800 NS µg/kg ND ND	
delta-BHC 490 NS μg/kg ND ND	
Dieldrin 40 NS μg/kg 0.302 J	
Endosulfan I 47000 NS μg/kg ND ND <td></td>	
Endosulfan II 47000 NS μg/kg ND ND <td></td>	
Endosulfan sulfate 47000 NS μg/kg 4.33 ND	
Endrin 2300 NS μg/kg ND ND	
Endrin aldehyde 2300 NS μg/kg ND ND </td <td></td>	
Endrin ketone 2300 NS μg/kg ND ND	
Heptachlor 140 NS μg/kg ND ND </td <td></td>	
Heptachlor epoxide 70 NS μg/kg ND <	
Methoxychlor 39000 NS μg/kg ND ND	
1 200 110 µg/ng 110 110	
Volatile Organic Compounds (SW8260B)	
1,1,1-trichloroethane 16000000 NS μg/kg ND ND ND	
1,1,2,2-tetrachloroethane 3200 NS μg/kg ND ND ND	
1,1,2-Trichloro-1,2,2-trifluoroethane NS NS μg/kg ND ND ND	
1,1,2-trichloroethane 11000 NS μg/kg ND ND ND	
1,1-dichloroethane 1600000 NS μg/kg ND ND ND	
1,1-dichloroethene 390000 NS μg/kg ND ND ND	
1,2,4-trichlorobenzene 78000 NS μg/kg ND ND ND	

Table 1. Soil Analytical Summary

			Location	SS-01	SS-01	SS-02	SS-02	SS-03	SS-03	SS-03	SS-04	SS-04	SS-05	SS-05
		Sa	mple Name	SS-01-0-1	SS-01-4-5	SS-02-0-1	SS-02-4-5	SS-03-0-1	SS-03-4-5	DUP-01	SS-04-0-1	SS-04-4-5	SS-05-0-1	SS-05-4-5
	Par		mple Name	55 01 0 1	55 01 15	55 02 0 1	55 02 13		55 05 15	SS-03-4-5			55 05 0 1	55 05 15
			ample Date	6/10/2015	6/10/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015
			mple Depth	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
	MDE RES		p.c 2 cp	0 1 10		V 110		0 1 10	. 0 10		0 1 10		0 1 10	. 5 10
Analyte	Soil	ATC	Unit											
1,2-Dibromo-3-chloropropane	200	NS	μg/kg					ND	ND	ND				
1,2-dibromoethane	320	NS	μg/kg					ND	ND	ND				
1,2-dichlorobenzene	700000	NS	μg/kg					ND	ND	ND				
1,2-dichloroethane	7000	NS	μg/kg					ND	ND	ND				
1,2-dichloropropane	9400	NS	μg/kg					ND	ND	ND				
1,3-dichlorobenzene	23000	NS	μg/kg					ND	ND	ND				
1,4-dichlorobenzene	27000	NS	μg/kg					ND	ND	ND				
2-butanone	4700000	NS	μg/kg					ND	ND	ND				
2-hexanone	NS	NS	μg/kg					ND	ND	ND				
4-methyl-2-pentanone	NS	NS	μg/kg					ND	ND	ND				
Acetone	7000000	NS	μg/kg					23.9	8.44 J	7.44 J				
Benzene	12000	NS	μg/kg					ND	ND	ND				
Bromodichloromethane	10000	NS	μg/kg					ND	ND	ND				
Bromoform	81000	NS	μg/kg					ND	ND	ND				
Bromomethane	11000	NS	μg/kg					ND	ND	ND				
Carbon disulfide	780000	NS	μg/kg					ND	ND	ND				
Carbon tetrachloride	4900	NS	μg/kg					ND	ND	ND				
Chlorobenzene	160000	NS	μg/kg					ND	ND	ND				
Chloroethane	220000	NS	μg/kg					ND	ND	ND				
Chloroform	78000	NS	μg/kg					ND	ND	ND				
Chloromethane	NS	NS	μg/kg					ND	ND	ND				
cis-1,2-dichloroethene	78000	NS	μg/kg					ND	ND	ND				
cis-1,3-dichloropropene	6400	NS	μg/kg					ND	ND	ND				
Cyclohexane	NS	NS	μg/kg					ND	ND	ND				
Dibromochloromethane	7600	NS	μg/kg					ND	ND	ND				
Dichlorodifluoromethane	NS	NS	μg/kg					ND	ND	ND				
Ethylbenzene	780000	NS	μg/kg					ND	ND	ND				
Isopropylbenzene	780000	NS	μg/kg					ND	ND	ND				
M,P-Xylene	NS	NS	μg/kg					ND	ND	ND				
Methyl acetate	NS	NS	μg/kg					ND	ND	ND				
Methyl tert-butyl ether	160000	NS	μg/kg					ND	ND	ND				
Methylcyclohexane	NS	NS	μg/kg					ND	ND	ND				
Methylene Chloride	85000	NS	μg/kg					ND	ND	2.30 J				
o-Xylene	NS	NS	μg/kg					ND	ND	ND				
Styrene	1600000	NS	μg/kg					ND	ND	ND				
Tetrachloroethene	1200	NS	μg/kg					ND	ND	ND				
Toluene	630000	NS	μg/kg					ND	ND	ND				
trans-1,2-dichloroethene	160000	NS	μg/kg					ND	ND	ND				
trans-1,3-dichloropropene	6400	NS	μg/kg μg/kg					ND	ND	ND				
Trichloroethene	1600	NS	μg/kg					ND	ND	ND				
Trichlorofluoromethane	NS	NS	μg/kg					ND	ND	ND				
Vinyl chloride	90	NS	μg/kg μg/kg					ND	ND	ND				
· mgr omorido	1	110	r6/16		l .	l	I	1 112	1,12	1 110	l .	<u> </u>	l .	

Table 1. Soil Analytical Summary

			Location	SS-01	SS-01	SS-02	SS-02	SS-03	SS-03	SS-03	SS-04	SS-04	SS-05	SS-05
		Sai	mple Name	SS-01-0-1	SS-01-4-5	SS-02-0-1	SS-02-4-5	SS-03-0-1	SS-03-4-5	DUP-01	SS-04-0-1	SS-04-4-5	SS-05-0-1	SS-05-4-5
	Par		mple Name	55 01 0 1		55 02 0 1	55 02 15	55 05 0 1	55 05 15	SS-03-4-5	55 01 0 1	55 01 15	55 05 0 1	55 05 15
			ample Date	6/10/2015	6/10/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015
			nple Depth	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
	MDE RES		pro z opti	0 1 10	. 0 10	0 1 10	. 0 10	0 1 10			0 1 10	. 0 10	0.110	
Analyte	Soil	ATC	Unit											
Semi-Volatile Organic Compounds (SW8	3270D)													
1,1-biphenyl	NS	NS	μg/kg	ND										
2,2-oxybis(1-chloropropane)	NS	NS	μg/kg	ND										
2,4,5-trichlorophenol	780000	NS	μg/kg	ND										
2,4,6-trichlorophenol	58000	NS	μg/kg	ND										
2,4-dichlorophenol	23000	NS	μg/kg	ND										
2,4-dimethylphenol	160000	NS	μg/kg	ND										
2,4-dinitrophenol	16000	NS	μg/kg	ND										
2,4-dinitrotoluene	16000	NS	μg/kg	ND										
2,6-dinitrotoluene	7800	NS	μg/kg	ND										
2-chloronaphthalene	630000	NS	μg/kg	ND										
2-chlorophenol	39000	NS	μg/kg	ND										
2-Methyl-4,6-dinitrophenol	NS	NS	μg/kg	ND										
2-methylnaphthalene	31000	NS	μg/kg	ND										
2-methylphenol	390000	NS	μg/kg	ND										
2-nitroaniline	NS	NS	μg/kg	ND										
2-nitrophenol	NS	NS	μg/kg	ND										
3,3-dichlorobenzidine	1400	NS	μg/kg	ND										
3-nitroaniline	NS	NS	μg/kg	ND										
4-bromophenyl phenyl ether	NS	NS	μg/kg	ND										
4-chloro-3-methylphenol	NS	NS	μg/kg	ND										
4-chloroaniline	31000	NS	μg/kg	ND										
4-chlorophenyl phenyl ether	NS	NS	μg/kg	ND										
4-methylphenol	39000	NS	μg/kg	ND										
4-nitroaniline	NS	NS	μg/kg	ND										
4-nitrophenol	NS	NS	μg/kg	ND										
Acenaphthene	470000	NS	μg/kg	ND										
Acenaphthylene	470000	NS	μg/kg	ND										
Acetophenone	NS	NS	μg/kg	ND										
Anthracene	2300000	NS	μg/kg	ND										
Atrazine	2900	NS	μg/kg	ND										
Benzaldehyde	NS	NS	μg/kg	ND										
Benzo[a]anthracene	220	NS	μg/kg	ND										
Benzo[a]pyrene	22	NS	μg/kg	ND										
Benzo[b]fluoranthene	220	NS	μg/kg	ND										
Benzo[g,h,i]perylene	230000	NS	μg/kg	ND										

Table 1. Soil Analytical Summary

		Logation	CC O1	CC 01	CC 02	gg 02	CC 02	CC 02	gg 02	CC 04	CC 04	CC OF	CC OF	
		C	Location	SS-01	SS-01	SS-02	SS-02	SS-03	SS-03	SS-03	SS-04	SS-04	SS-05	SS-05
	D		mple Name	SS-01-0-1	SS-01-4-5	SS-02-0-1	SS-02-4-5	SS-03-0-1	SS-03-4-5	DUP-01	SS-04-0-1	SS-04-4-5	SS-05-0-1	SS-05-4-5
	Pai		mple Name	C/10/2015	6/10/2015	6/0/2015	6/0/2015	6/0/2015	6/0/2015	SS-03-4-5	6/10/2015	6/10/2015	6/10/2015	6/10/2015
			ample Date	6/10/2015	6/10/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015
	Sample Dept MDE RES			0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
Analyte	Soil	ATC	Unit											
Benzo[k]fluoranthene	2200	NS	μg/kg	ND										
Benzyl butyl phthalate	NS	NS	μg/kg	ND										
Bis(2-chloroethoxy) methane	NS	NS	μg/kg	ND										
Bis(2-chloroethyl) ether	580	NS	μg/kg	ND										
Bis(2-ethylhexyl) phthalate	46000	NS	μg/kg	ND										
Caprolactam	NS	NS	μg/kg	ND										
Carbazole	32000	NS	μg/kg	ND										
Chrysene	22000	NS	μg/kg	ND										
Dibenz[a,h]anthracene	22	NS	μg/kg	ND										
Dibenzofuran	7800	NS	μg/kg	ND										
Diethyl phthalate	6300000	NS	μg/kg	ND										
Dimethyl phthalate	NS	NS	μg/kg	ND										
Di-n-butyl phthalate	780000	NS	μg/kg	ND										
Di-n-octyl phthalate	NS	NS	μg/kg	ND										
Fluoranthene	310000	NS	μg/kg	ND										
Fluorene	310000	NS	μg/kg	ND										
Hexachloro-1,3-butadiene	8200	NS	μg/kg	ND										
Hexachlorobenzene	400	NS	μg/kg	ND										
Hexachlorocyclopentadiene	47000	NS	μg/kg	ND										
Hexachloroethane	46000	NS	μg/kg	ND										
Indeno[1,2,3-c,d]pyrene	220	NS	μg/kg	ND										
Isophorone	670000	NS	μg/kg	ND										
Naphthalene	160000	NS	μg/kg	ND										
Nitrobenzene	3900	NS	μg/kg	ND										
N-nitrosodi-n-propylamine	91	NS	μg/kg	ND										
N-nitrosodiphenylamine	130000	NS	μg/kg	ND										
Pentachlorophenol	5300	NS	μg/kg	ND										
Phenanthrene	2300000	NS	μg/kg	ND										
Phenol	2300000	NS	μg/kg	ND										
Pyrene	230000	NS	μg/kg	ND										
Notes:	-	•	•											

Notes

MDE RES Soil = Maryland Department of Environment residential cleanup standards for soil, date June 2008.

ATC = Anticipated Typical Concentration.

NS = No screening criteria.

-- = Not analyzed.

J = Estimated concentration.

B = Blank Detection.

Bold = Exceeds MDE RES Soil

Gray Shade = ATC

mg/kg = Milligrams per kilogram

 $\mu g/kg = Micrograms per kilogram$

ND = Not Detected.

Table 1. Soil Analytical Summary

			-			1	1		1		1	1	1	Ī
			Location	SS-06	SS-06	SS-07	SS-07	SS-08	SS-08	SS-08	SS-09	SS-09	SS-10	SS-10
			mple Name	SS-06-0-1	SS-06-4-5	SS-07-0-1	SS-07-4-5	SS-08-0-1	DUP-02	SS-08-4-5	SS-09-0-1	SS-09-4-5	SS-10-0-1	SS-10-4-5
	Pa		mple Name						SS-08-0-1					
			ample Date	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015
	I MDE DEG		mple Depth	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
Analyte	MDE RES Soil	ATC	Unit											
Metals (SW6010C and SW7471B)			<u>!</u>					<u> </u>						
Antimony	3.1	NS	mg/kg	ND										
Arsenic	0.67	3.6	mg/kg	0.967 J	1.98 J	2.18 J	0.917 J	1.02 J	1.01 J	0.838 J	ND	1.66 J	1.80 J	2.05 J
Beryllium	16	NS	mg/kg	0.238 J	ND	ND	0.310 J	ND	ND	ND	ND	ND	0.237 J	0.340 J
Cadmium	3.9	NS	mg/kg	ND										
Chromium	23	280	mg/kg	9.86	12.8	5.74	17.5	4.20	3.89	4.55	3.62	5.08	6.28	9.69
Copper	310	NS	mg/kg	3.14	2.36 J	4.11	3.17	2.11 J	1.67 J	4.10	7.96	1.35 J	3.15	3.21
Lead	400	NS	mg/kg	6.66	5.23	2.40	6.64	2.81	2.22	3.75	3.99	10.1	6.60	4.52
Mercury	0.78	NS	mg/kg	ND	0.0201 J	0.0239 J	ND							
Nickel	160	NS	mg/kg	3.03	3.20	2.03 J	3.05	2.25 J	2.03 J	2.04 J	39.3	1.77 J	3.51	4.56
Selenium	39	NS	mg/kg	ND										
Silver	39	NS	mg/kg	ND										
Thallium	0.55	3.9	mg/kg	ND										
Zinc	2300	NS	mg/kg	5.58	3.80 J	10.1	7.28	11.2	8.07	444	44.0	7.13	11.1	8.31
Diesel Range Organics (SW8015C)		<u> </u>			1	l	I	l .			I.			
Diesel Range Organics	230	NS	mg/kg					14.4 J	16.0	34.2	72.7	24.0	44.9	13.8 J
Pesticides (SW8081B)					<u> </u>	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>	l	<u> </u>		
4,4-DDD	2700	NS	μg/kg											
4,4-DDT	1900	NS	μg/kg											
alpha-BHC	100	NS	μg/kg											
alpha-Chlordane	NS	NS	μg/kg											
Chlordane	1800	NS	μg/kg											
delta-BHC	490	NS	μg/kg											
Dieldrin	40	NS	μg/kg											
Endosulfan I	47000	NS	μg/kg											
Endosulfan II	47000	NS	μg/kg											
Endosulfan sulfate	47000	NS	μg/kg											
Endrin	2300	NS	μg/kg											
Endrin aldehyde	2300	NS	μg/kg											
Endrin ketone	2300	NS	μg/kg											
Heptachlor	140	NS	μg/kg											
Heptachlor epoxide	70	NS	μg/kg											
Methoxychlor	39000	NS	μg/kg											
Toxaphene	580	NS	μg/kg											
Volatile Organic Compounds (SW8260E	B)		•		•		-	-	•	•	-	•		
1,1,1-trichloroethane	16000000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,1,2,2-tetrachloroethane	3200	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,1,2-trichloroethane	11000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,1-dichloroethane	1600000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,1-dichloroethene	390000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,2,4-trichlorobenzene	78000	NS	μg/kg			ND	ND				ND	ND	ND	ND

Table 1. Soil Analytical Summary

			Location	SS-06	SS-06	SS-07	SS-07	SS-08	SS-08	SS-08	SS-09	SS-09	SS-10	SS-10
		Sa	mple Name	SS-06-0-1	SS-06-4-5	SS-07-0-1	SS-07-4-5	SS-08-0-1	DUP-02	SS-08-4-5	SS-09-0-1	SS-09-4-5	SS-10-0-1	SS-10-4-5
	Pa		mple Name						SS-08-0-1					
			ample Date	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015
			mple Depth	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
Analyte	MDE RES Soil	ATC	Unit											
1,2-Dibromo-3-chloropropane	200	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,2-dibromoethane	320	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,2-dichlorobenzene	700000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,2-dichloroethane	7000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,2-dichloropropane	9400	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,3-dichlorobenzene	23000	NS	μg/kg			ND	ND				ND	ND	ND	ND
1,4-dichlorobenzene	27000	NS	μg/kg			ND	ND				ND	ND	ND	ND
2-butanone	4700000	NS	μg/kg			ND	ND				9.72	ND	2.66 J	ND
2-hexanone	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
4-methyl-2-pentanone	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Acetone	7000000	NS	μg/kg			10.5 J	ND				50.8	14.4 J	22.5	25.1 N
Benzene	12000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Bromodichloromethane	10000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Bromoform	81000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Bromomethane	11000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Carbon disulfide	780000	NS	μg/kg			1.27 J	ND				ND	2.43 J	3.98 J	1.30 J
Carbon tetrachloride	4900	NS	μg/kg			ND	ND				ND	ND	ND	ND
Chlorobenzene	160000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Chloroethane	220000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Chloroform	78000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Chloromethane	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
cis-1,2-dichloroethene	78000	NS	μg/kg			ND	ND				ND	ND	ND	ND
cis-1,3-dichloropropene	6400	NS	μg/kg			ND	ND				ND	ND	ND	ND
Cyclohexane	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Dibromochloromethane	7600	NS	μg/kg			ND	ND				ND	ND	ND	ND
Dichlorodifluoromethane	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Ethylbenzene	780000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Isopropylbenzene	780000	NS	μg/kg			ND	ND				ND	ND	ND	ND
M,P-Xylene	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Methyl acetate	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Methyl tert-butyl ether	160000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Methylcyclohexane	NS	NS	μg/kg			ND	ND				ND	ND	2.42 J	ND
Methylene Chloride	85000	NS	μg/kg			ND	ND				ND	ND	ND	ND
o-Xylene	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Styrene	1600000	NS	μg/kg			ND	ND				ND	ND	ND	ND
Tetrachloroethene	1200	NS	μg/kg			ND	ND				ND	ND	ND	ND
Toluene	630000	NS	μg/kg			ND	ND				ND	ND	ND	ND
trans-1,2-dichloroethene	160000	NS	μg/kg			ND	ND				ND	ND	ND	ND
trans-1,3-dichloropropene	6400	NS	μg/kg			ND	ND				ND	ND	ND	ND
Trichloroethene	1600	NS	μg/kg			ND	ND				ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	μg/kg			ND	ND				ND	ND	ND	ND
Vinyl chloride	90	NS	μg/kg			ND	ND				ND	ND	ND	ND

Table 1. Soil Analytical Summary

			Location	SS-06	SS-06	SS-07	SS-07	SS-08	SS-08	SS-08	SS-09	SS-09	SS-10	SS-10
		Sa	mple Name	SS-06-0-1	SS-06-4-5	SS-07-0-1	SS-07-4-5	SS-08-0-1	DUP-02	SS-08-4-5	SS-09-0-1	SS-09-4-5	SS-10-0-1	SS-10-4-5
	Par		mple Name		22 22 2				SS-08-0-1					
			ample Date	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015
			mple Depth	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
	MDE RES		r · ·r·											
Analyte	Soil	ATC	Unit											
Semi-Volatile Organic Compounds (SW8	270D)				•									
1,1-biphenyl	NS	NS	μg/kg	ND										
2,2-oxybis(1-chloropropane)	NS	NS	μg/kg	ND										
2,4,5-trichlorophenol	780000	NS	μg/kg	ND										
2,4,6-trichlorophenol	58000	NS	μg/kg	ND										
2,4-dichlorophenol	23000	NS	μg/kg	ND										
2,4-dimethylphenol	160000	NS	μg/kg	ND										
2,4-dinitrophenol	16000	NS	μg/kg	ND										
2,4-dinitrotoluene	16000	NS	μg/kg	ND										
2,6-dinitrotoluene	7800	NS	μg/kg	ND										
2-chloronaphthalene	630000	NS	μg/kg	ND										
2-chlorophenol	39000	NS	μg/kg	ND										
2-Methyl-4,6-dinitrophenol	NS	NS	μg/kg	ND										
2-methylnaphthalene	31000	NS	μg/kg	ND										
2-methylphenol	390000	NS	μg/kg	ND										
2-nitroaniline	NS	NS	μg/kg	ND										
2-nitrophenol	NS	NS	μg/kg	ND										
3,3-dichlorobenzidine	1400	NS	μg/kg	ND										
3-nitroaniline	NS	NS	μg/kg	ND										
4-bromophenyl phenyl ether	NS	NS	μg/kg	ND										
4-chloro-3-methylphenol	NS	NS	μg/kg	ND										
4-chloroaniline	31000	NS	μg/kg	ND										
4-chlorophenyl phenyl ether	NS	NS	μg/kg	ND										
4-methylphenol	39000	NS	μg/kg	ND										
4-nitroaniline	NS	NS	μg/kg	ND										
4-nitrophenol	NS	NS	μg/kg	ND										
Acenaphthene	470000	NS	μg/kg	ND										
Acenaphthylene	470000	NS	μg/kg	ND										
Acetophenone	NS	NS	μg/kg	ND										
Anthracene	2300000	NS	μg/kg	ND	92.0 J	ND								
Atrazine	2900	NS	μg/kg	ND										
Benzaldehyde	NS	NS	μg/kg	ND										
Benzo[a]anthracene	220	NS	μg/kg	ND	248 J	ND								
Benzo[a]pyrene	22	NS	μg/kg	ND	244 J	ND								
Benzo[b]fluoranthene	220	NS	μg/kg	ND	206 J	ND								
Benzo[g,h,i]perylene	230000	NS	μg/kg	ND	165 J	ND								

Table 1. Soil Analytical Summary

	Location	SS-06	SS-06	SS-07	SS-07	SS-08	SS-08	SS-08	SS-09	SS-09	SS-10	SS-10		
		Sa	mple Name	SS-06-0-1	SS-06-4-5	SS-07-0-1	SS-07-4-5	SS-08-0-1	DUP-02	SS-08-4-5	SS-09-0-1	SS-09-4-5	SS-10-0-1	SS-10-4-5
	Par	rent Sa	mple Name						SS-08-0-1					
		S	ample Date	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015
		Sar	mple Depth	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft	0-1 ft	4-5 ft
	MDE RES													
Analyte	Soil	ATC	Unit											
Benzo[k]fluoranthene	2200	NS	μg/kg	ND	203 J	ND								
Benzyl butyl phthalate	NS	NS	μg/kg	ND										
Bis(2-chloroethoxy) methane	NS	NS	μg/kg	ND										
Bis(2-chloroethyl) ether	580	NS	μg/kg	ND										
Bis(2-ethylhexyl) phthalate	46000	NS	μg/kg	ND										
Caprolactam	NS	NS	μg/kg	ND										
Carbazole	32000	NS	μg/kg	ND										
Chrysene	22000	NS	μg/kg	ND	238 J	ND								
Dibenz[a,h]anthracene	22	NS	µg/kg	ND										
Dibenzofuran	7800	NS	μg/kg	ND										
Diethyl phthalate	6300000	NS	μg/kg	ND										
Dimethyl phthalate	NS	NS	μg/kg	ND										
Di-n-butyl phthalate	780000	NS	μg/kg	ND										
Di-n-octyl phthalate	NS	NS	µg/kg	ND										
Fluoranthene	310000	NS	μg/kg	ND	452	ND								
Fluorene	310000	NS	µg/kg	ND										
Hexachloro-1,3-butadiene	8200	NS	μg/kg	ND										
Hexachlorobenzene	400	NS	μg/kg	ND										
Hexachlorocyclopentadiene	47000	NS	μg/kg	ND										
Hexachloroethane	46000	NS	μg/kg	ND										
Indeno[1,2,3-c,d]pyrene	220	NS	μg/kg	ND	187 J	ND								
Isophorone	670000	NS	μg/kg	ND										
Naphthalene	160000	NS	μg/kg	ND										
Nitrobenzene	3900	NS	μg/kg	ND										
N-nitrosodi-n-propylamine	91	NS	μg/kg	ND										
N-nitrosodiphenylamine	130000	NS	μg/kg	ND										
Pentachlorophenol	5300	NS	μg/kg	ND										
Phenanthrene	2300000	NS	μg/kg	ND	339 J	ND								
Phenol	2300000	NS	μg/kg	ND										
Pyrene	230000	NS	μg/kg	ND	396	ND								
Notes:			•		,	•								

Notes:

MDE RES Soil = Maryland Department of Environment residential cleanup st

ATC = Anticipated Typical Concentration.

NS = No screening criteria.

-- = Not analyzed.

J = Estimated concentration.

B = Blank Detection.

Bold = Exceeds MDE RES Soil

Gray Shade = ATC

mg/kg = Milligrams per kilogram

 $\mu g/kg = Micrograms per kilogram$

ND = Not Detected.

 Table 2. Groundwater Analytical Summary

cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND			Location	GW-03	GW-04	GW-04
Name						DUP-GW-01
Nanalyte GW Unit College College			_			
Analyte GW Unit			_	6/10/2015	6/10/2015	
Metals (SW6010C and SW7470) Antimony 6	Analyte	GW				
Antimony 6			<u> </u>			
Arsenic 10	·	6	μg/l	ND	ND	
Beryllium	·			3.84 J	ND	
Cadmium		4			ND	
Chromium	ř	5				
Copper 1300 μg/l ND ND Lead 15 μg/l 4.77 J ND Mercury 0.37 μg/l ND ND Nickel 73 μg/l ND ND Selenium 50 μg/l ND ND Silver 100 μg/l ND ND Thallium 2 μg/l ND ND Zine 5000 μg/l ND	Chromium	100				
Lead			•			
Mercury 0.37 μg/l ND ND Nickel 73 μg/l ND ND Selenium 50 μg/l ND ND Silver 100 μg/l ND ND Silver 100 μg/l ND ND Thallium 2 μg/l ND ND Thallium 2 μg/l ND ND Thallium 2 μg/l ND ND Volatile Organic Compounds (SW8260B) 1,1,1-trichlorocthane 200 μg/l ND ND ND ND 1,1,2-trichlorocthane 0.053 μg/l ND ND ND ND 1,1,2-trichloro-1,2,2-trifluoroethane NS μg/l ND ND ND ND 1,1,2-trichloro-1,2,2-trifluoroethane NS μg/l ND ND ND ND 1,1,2-trichloroethane 5 μg/l ND ND ND ND 1,1,2-trichloroethane 90 μg/l ND ND ND ND 1,1,2-trichloroethane 90 μg/l ND ND ND ND 1,1-dichloroethane 90 μg/l ND ND ND ND 1,2-dichloroethane 7 μg/l ND ND ND 1,2-dichloroethane 0.055 μg/l ND ND ND 1,2-dichloroethane 0.055 μg/l ND ND ND 1,2-dichloroethane 0.055 μg/l ND ND ND 1,2-dichloroethane 5 μg/l ND ND ND 2-bexanone 5 μg/l ND ND ND 3-bexanone 5 μg/l ND ND ND 4-dectone 550 μg/l ND ND ND 5-bexanone 5 μg/l ND ND ND 5-bexanone 5 μg/l ND ND N						
Nickel 73			• -			
Selenium SO	·					
Silver						
Thallium						
Zinc S000 μg/l ND ND ND ND						
Volatile Organic Compounds (SW8260B) 1.1.1-trichloroethane 200 μg/l ND ND ND 1.1,2.2-tetrachloroethane 0.053 μg/l ND ND <td< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td></td<>			•			
1,1,1-trichloroethane 200 µg/I ND ND ND 1,1,2,2-tetrachloroethane 0.053 µg/I ND ND ND 1,1,2-Trichloro-1,2,2-trifluoroethane NS µg/I ND ND ND 1,1,2-trichloroethane 5 µg/I ND ND ND 1,1-dichloroethane 90 µg/I ND ND ND 1,1-dichloroethane 7 µg/I ND ND ND 1,2-dichloroethane 70 µg/I ND ND ND 1,2-dibromoethane 0.05 µg/I ND ND ND 1,2-dichlorobenzene 600 µg/I ND ND ND 1,2-dichlorobenzene 5 µg/I ND ND ND 1,2-dichlorobenzene 5 µg/I ND ND ND 1,2-dichlorobenzene 5 µg/I ND ND ND 1,2-dichloroethane 18 µg/I ND ND<			m8/-	1,12	1,2	
1,1,2,2-tetrachloroethane			ug/l	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane						
1,1,2-trichloroethane 5 μg/l ND ND ND 1,1-dichloroethane 90 μg/l ND ND ND 1,1-dichloroethane 7 μg/l ND ND ND 1,2,4-trichlorobenzene 70 μg/l ND ND ND 1,2-dibromo-3-chloropropane NS μg/l ND ND ND 1,2-dibromoethane 0.05 μg/l ND ND ND 1,2-dichlorobenzene 600 μg/l ND ND ND 1,2-dichlorobenzene 5 μg/l ND ND ND 1,2-dichlorobenzene 5 μg/l ND ND ND 1,2-dichlorobenzene 5 μg/l ND ND ND 1,2-dichlorobenzene 75 μg/l ND ND ND 1,4-dichlorobenzene 75 μg/l ND ND ND 2-butanone 75 μg/l ND ND ND			· -			
1,1-dichloroethane						
1,1-dichloroethene 7 µg/l ND ND ND 1,2-4-trichlorobenzene 70 µg/l ND ND ND 1,2-Dibromo-3-chloropropane NS µg/l ND ND ND 1,2-dibromoethane 0.05 µg/l ND ND ND 1,2-dichlorobenzene 600 µg/l ND ND ND 1,2-dichloroptenzene 5 µg/l ND ND ND 1,2-dichloroptenzene 5 µg/l ND ND ND 1,2-dichloroptenzene 5 µg/l ND ND ND 1,2-dichloroptenzene 1.8 µg/l ND ND ND 1,2-dichloroptenzene 1.8 µg/l ND ND ND 1,2-dichloroptenzene 75 µg/l ND ND ND 1,3-dichloroptenzene 75 µg/l ND ND ND 2-butanone 75 µg/l ND ND	, ,		· -			
1,2,4-trichlorobenzene 70 µg/l ND ND ND 1,2-Dibromo-3-chloropropane NS µg/l ND ND ND 1,2-dichlorobenzene 0.05 µg/l ND ND ND 1,2-dichlorobenzene 600 µg/l ND ND ND 1,2-dichlorobenzene 5 µg/l ND ND ND 1,2-dichlorobenzene 5 µg/l ND ND ND 1,3-dichlorobenzene 1.8 µg/l ND ND ND 1,4-dichlorobenzene 75 µg/l ND ND ND 2-butanone 750 µg/l ND ND ND 2-bexanone NS µg/l ND ND ND 4-methyl-2-pentanone 630 µg/l ND ND ND Acetone 550 µg/l ND ND ND Benzene 5 µg/l ND ND ND			· -			
1,2-Dibromo-3-chloropropane NS µg/l ND ND ND 1,2-dibromoethane 0.05 µg/l ND ND ND 1,2-dichlorobenzene 600 µg/l ND ND ND 1,2-dichlorobenzene 5 µg/l ND ND ND 1,2-dichloropropane 5 µg/l ND ND ND 1,3-dichlorobenzene 1.8 µg/l ND ND ND 1,4-dichlorobenzene 75 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone 70 µg/l ND ND ND 2-butanone 70 µg/l ND ND ND ND 2-hexanone NS µg/l ND ND ND ND	· ·					
1,2-dibromoethane 0.05 µg/l ND ND ND 1,2-dichlorobenzene 600 µg/l ND ND ND 1,2-dichlorobenzene 5 µg/l ND ND ND 1,2-dichloropenane 5 µg/l ND ND ND 1,3-dichlorobenzene 1.8 µg/l ND ND ND 1,4-dichlorobenzene 75 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND ND 2-but	* *					
1,2-dichlorobenzene 600 µg/I ND ND ND 1,2-dichloroethane 5 µg/I ND ND ND 1,2-dichloropropane 5 µg/I ND ND ND 1,3-dichlorobenzene 1.8 µg/I ND ND ND 1,4-dichlorobenzene 75 µg/I ND ND ND 2-butanone 700 µg/I ND ND ND ND 2-butanone 700 µg/I ND	1 1					
1,2-dichloroethane 5 µg/l ND ND ND 1,2-dichloropropane 5 µg/l ND ND ND 1,3-dichlorobenzene 1.8 µg/l ND ND ND 1,4-dichlorobenzene 75 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone 75 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND ND 2-butanone 700 µg/l ND	·					
1,2-dichloropropane 5 µg/l ND ND ND 1,3-dichlorobenzene 1.8 µg/l ND ND ND 1,4-dichlorobenzene 75 µg/l ND ND ND 2-butanone 700 µg/l ND ND ND 2-butanone NS µg/l ND ND ND 2-hexanone NS µg/l ND ND ND 4-methyl-2-pentanone 630 µg/l ND ND ND 4-methyl-2-pentanone 630 µg/l ND ND ND Acetone 550 µg/l ND ND ND Acetone 550 µg/l ND ND ND Benzene 5 µg/l ND ND ND Bromodichloromethane 80 µg/l ND ND ND Bromoform 80 µg/l ND ND ND ND Carbon disulfi	· ·					
1,3-dichlorobenzene 1.8 μg/l ND ND ND 1,4-dichlorobenzene 75 μg/l ND ND ND 2-butanone 700 μg/l ND ND ND 2-bexanone NS μg/l ND ND ND 4-methyl-2-pentanone 630 μg/l ND ND ND 4-methyl-2-pentanone 630 μg/l ND ND ND Acetone 550 μg/l 31.4 D 30.6 D 49.0 D Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND ND Bromomethane 0.85 μg/l ND ND ND ND Carbon disulfide 100 μg/l ND ND <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>	· ·					
1,4-dichlorobenzene 75 μg/l ND ND ND 2-butanone 700 μg/l ND ND ND 2-bexanone NS μg/l ND ND ND 4-methyl-2-pentanone 630 μg/l ND ND ND 4-methyl-2-pentanone 630 μg/l ND ND ND Acetone 550 μg/l ND ND ND Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND ND Bromomethane 0.85 μg/l ND ND ND ND Carbon disulfide 100 μg/l ND	1 1					
2-butanone 700 μg/l ND ND ND 2-hexanone NS μg/l ND ND ND 4-methyl-2-pentanone 630 μg/l ND ND ND Acetone 550 μg/l 31.4 D 30.6 D 49.0 D Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 </td <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>	· ·					
2-hexanone NS μg/l ND ND ND 4-methyl-2-pentanone 630 μg/l ND ND ND Acetone 550 μg/l 31.4 D 30.6 D 49.0 D Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloroethane 19 μg/l ND ND ND Cis-1,2-dichloroethene						
4-methyl-2-pentanone 630 μg/l ND ND ND Acetone 550 μg/l 31.4 D 30.6 D 49.0 D Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chlorothane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND Cis-1,2-dichloroethene 70 μg/l ND ND ND Cis-1,3-dichloropr						
Acetone 550 μg/l 31.4 D 30.6 D 49.0 D Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND Cyclohexane			· -			
Benzene 5 μg/l ND ND ND Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane	• •					
Bromodichloromethane 80 μg/l ND ND ND Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chlorobenzene 3.6 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane						
Bromoform 80 μg/l ND ND ND Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND Cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND						
Bromomethane 0.85 μg/l ND ND ND Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND	Bromoform	80		ND	ND	ND
Carbon disulfide 100 μg/l ND ND ND Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND	Bromomethane	0.85		ND	ND	ND
Carbon tetrachloride 5 μg/l ND ND ND Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND Cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND						
Chlorobenzene 100 μg/l ND ND ND Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND Cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND			•			
Chloroethane 3.6 μg/l ND ND ND Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND						
Chloroform 80 μg/l ND ND ND Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND						
Chloromethane 19 μg/l ND ND ND cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND						
cis-1,2-dichloroethene 70 μg/l ND ND ND cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND	Chloromethane	19	· -			ND
cis-1,3-dichloropropene 0.44 μg/l ND ND ND Cyclohexane NS μg/l ND ND ND Dibromochloromethane 80 μg/l ND ND ND	cis-1,2-dichloroethene					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Dibromochloromethane 80 µg/l ND ND ND	± ±					
	·					
	Dichlorodifluoromethane	NS	μg/l	ND	ND	ND

Table 2. Groundwater Analytical Summary

		Location	GW-03	GW-04	GW-04
		Sample Name	GW-03	GW-04	DUP-GW-01
		Parent Sample Name			GW-04
		Sample Date	6/10/2015	6/10/2015	6/10/2015
Analyte	GW	Unit			
Ethylbenzene	700	μg/l	ND	ND	ND
Isopropylbenzene	66	μg/l	ND	ND	ND
M,P-Xylene	NS	μg/l	ND	ND	ND
Methyl acetate	NS	μg/l	ND	ND	ND
Methyl tert-butyl ether	20	μg/l	ND	ND	ND
Methylcyclohexane	NS	μg/l	ND	ND	ND
Methylene Chloride	5	μg/l	ND	ND	ND
o-Xylene	NS	μg/l	ND	ND	ND
Styrene	100	μg/l	ND	ND	ND
Tetrachloroethene	5	μg/l	ND	ND	ND
Toluene	1000	μg/l	ND	ND	ND
trans-1,2-dichloroethene	100	μg/l	ND	ND	ND
trans-1,3-dichloropropene	0.44	μg/l	ND	ND	ND
Trichloroethene	5	μg/l	ND	ND	ND
Trichlorofluoromethane	NS	μg/l	ND	ND	ND
Vinyl chloride	2	μg/l	ND	ND	ND

Notes:

 $MDE\ GW = Maryland\ Department\ of\ Environment\ cleanup\ standards\ for\ Groundwater,\ Type\ I\ and\ II\ aquifers,\ date\ June\ 2008.$

NS = No screening criteria.

-- = Not analyzed.

D = Dilution

J = Estimated concentration.

Bold = **Exceeds MDE GW**

 $\mu g/l = Micrograms per liter$

Table 3. Surface Water Analytical Summary Table

		Sample Name:	EA SW-01	EA SW-02	EA SW-03
		Date Sampled:	6/10/2015	6/10/2015	6/10/2015
	Screening				
Analyte	Criteria	Unit			
Enterococci	61	MPN/100 ml	1.0	19.1	103.1
E. coli	235	MPN/100 ml	1.0	16.9	261.3

Notes:

Screening Criteria = Maryland Department of Environment Water Quality Criteria Specific to Designated Uses; Frequent Full Body Contact Recreation (Freshwater); http://www.dsd.state.md.us/comar/comar/tml/26/26.08.02.03-3.htm

Gray Shade = exceeds screening criteria

MPN = Most Probable Number

ml = milliliters

Appendix C

Photograph Log

Photographic Record

Tyson Foods 9943 Old Ocean City Boulevard Berlin, Maryland

View looking southeast at location SS-03, adjacent to the west of the lagoons.

View looking north at location SS-02/GW-04, adjacent to the northeast of the lagoons.

View looking southeast at location SS-06/GW-03, adjacent to the south of the lagoons.

Representative soil in the vicinity of the lagoons.

View looking southwest at location SS-07 in the vicinity of the former truck scales.

View looking east at location of SS-08 in the vicinity of the former aboveground storage tank.

Photographic Record

Tyson Foods 9943 Old Ocean City Boulevard Berlin, Maryland

View looking south at location SS-10 near the former maintenance room.

View looking east at location SS-09 located in the former boiler room.

Representative soil in the vicinity of the processing plant.

View looking south at location SS-05 in the smaller southern lagoon.

Representative sludge-like material at SS-05.

Representative subsurface soil at SS-05.

Photographic Record

Tyson Foods 9943 Old Ocean City Boulevard Berlin, Maryland

View looking south at location SS-01.

Representative subsurface soil at SS-01.

Representative sludge-like material at SS-04.

Representative sludge-like material at SS-01.

View looking north at location SS-04.

Representative subsurface soil at SS-04.

Appendix D

Soil Boring Logs

DODIN	0.044	-1.1.1.4	20					HOLE NUMBER			
BORIN 1. COMPA			OG		2. DRILL SUI	BCONTRAC [*]	TOR	SS-02			SHEET SHEETS
EA Engi					Green Ser						1 OF 1
3. PROJE Tyson F						4. PROPER 9943 Old Oc			5 / 6. AREA	AND MEASU	REMENTS I
7. NAME		LLER						S DESIGNATION OF DRILL	l l		
Don Marc		VDES OF	F DRILLING AND SAMPLING EQUIPMENT			Direct Pus		TION AND CONDITIONS			
			core barrel sampler			TU. SURFAC		grass			
	LINER	USED, IF	FAPPLICABLE								
PVC 11. DIREC	CT REA	DING PA	ARAMETERS: VOC- PID, ppm			12. DATE S	TARTED			COMPLETED	
14. OVER	BURDE	N THICK	KNESS			6/9/2015 15. DEPTH	GROUND	WATER ENCOUNTERED	6/9/2015		
NA 16. DEPT	ו ווסח ו	ED INT	O BOCK			8 ft	TO WATE	R AND ELAPSED TIME AFTER D	PILLING COM	DIETED	
NA	n DKILI	LED IN IV	UROCK			NA	IO WATE	R AND ELAPSED TIME AFTER D	KILLING COMP	LETED	
18. TOTA 16 ft	L DEPT	H OF HO	DLE			19. OTHER	WATER L	EVEL MEASUREMENTS (SPECIF	Υ)		
	INSTA	LLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM			SAMPLE TY	PE: Gra	ab			
Yes	I E INITI		temporary well	MDLEIN	TEDVAL AND	DESIGNAT	TION FOR	FIELD SCRENING ANALYSIS			LAB ANALYSIS
21. SAMP 0-1 4-5	LE INTI	SS-02-0 SS-02-4	D-1	1 ft	TERVAL ANI	D DESIGNAT	IION FOR	FIELD SCREENING ANALYSIS			SVOCs, PPL Metals, Pesticides, Herbicides
22. DISPO			IF NOT A WELL, BACKFILLED WITH: Soil cuttings and bentonite					23. GEOLOGIST Caron Mierczak			,
USCS	DEPTH	1	DESCRIPTION OF MATERIALS			DIRECT RI		ANALYTICAL SAMPLE DESIGN.	DEPTH (FT)	RECOVERY (IN.)	REMARKS
LOG	(FT)					VOC			(f)		KLWAKKO
(a) SM	(b)		(c) 0-27 inches - sandy SILT, dark brown to orange, mediu	ım graine	d	(ppm) 0.0		(e)	(1)	(g)	
						0.0		SS-02-0-1 @ 0925			
	2	-									
SM			28-31 inches - sandy SILT, orange mottled with black, I moist	lenses of	clay,	0.0					
	4					0.0			40	24	
SM	4		49-67 inches - sandy SILT, orange mottled with black, I	lenses of		0.0		SS-02-4-5 @ 0930	48	31	
OL			clay, wet 68-78 inches - clayey SILT, black, organic, moist			0.0					
	6	•	,,								
SM			79-93 inches - silty SAND, black, coarse, wet			0.0					
	8					0.0			48	42	
ML			97-118 inches - black SILT, trace medium grained SAN	ID, satura	ated	0.0					
						0.0					
SP	10		119-155 inches - SAND, trace SILT, grey/white, coarse	e, wet		0.0					
	12					0.0			48	48	
ML			156-179 inches - SILT, trace coarse SAND, white/bluist	h arev		0.0					
			saturated	9.0,,		0.0					
	14					0.0					
						0.0					
	16					0.0			48	35	
PROJEC1	<u></u> Г:	Tyson F	Facility			HOLE NO.:	SS-02			1	

								HOLE NUMBER			
BORIN	IG/WI	ELL LO	og					SS-03			
1. COMP				2.	DRILL SU	BCONTRAC*	TOR	100.00			SHEET SHEETS
EA Engi	neerin	g		G	reen Ser	vices					1 OF 1
3. PROJE						4. PROPER			5 / 6. AREA	A AND MEASU	JREMENTS
Tyson F						9943 Old Od					
7. NAME Don Marc		LLER				8. MANUFA Direct Pus		S DESIGNATION OF DRILL			
		YPES OF	F DRILLING AND SAMPLING EQUIPMENT					TION AND CONDITIONS			
			core barrel sampler			10. 00141740	JE EEE V	grass			
		-	FAPPLICABLE					3			
PVC											
11. DIRE	CT REA	DING PA	ARAMETERS: VOC- PID, ppm			12. DATE S	TARTED			COMPLETED	
14. OVER	DUDDE	-NI TI II CI	(ALEGO			6/9/2015	CDOLIND	WATER ENCOUNTERED	6/9/2015		
NA	KBUKDE	IN THICK	(NESS			15. DEPTH	GROUND	WATER ENCOUNTERED			
16. DEPT	H DRIL	LED INT	O ROCK				TO WATE	R AND ELAPSED TIME AFTER DI	RILLING COME	PLETED	
NA						NA					
18. TOTA	L DEPT	H OF H	DLE			19. OTHER	WATER L	EVEL MEASUREMENTS (SPECIF	Y)		
16 ft						NA					
	L INSTA	ALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM			SAMPLE TY	PE: Gra	ab			
No 21 SAME	PI F INT	FRVAL A	AND DESIGNATION FOR LAB ANALYSIS SAME	I F INT	FRVAL AN	L D DESIGNAT	TION FOR	FIELD SCREENING ANALYSIS			LAB ANALYSIS
0-1		SS-03-0				D DEGIGITA	110111 011	TIELD CORELINITO ANALTOIC			SVOCs, PPL Metals, VOCs
4-5		SS-03-									
22. DISPO		N	IF NOT A WELL, BACKFILLED WITH: Soil cuttings and bentonite					23. GEOLOGIST Caron Mierczak			
						DIRECT R	EADING	ANALYTICAL	DEPTH	RECOVERY	
USCS LOG	DEPTH (FT)	1	DESCRIPTION OF MATERIALS			VOC (d)	1	SAMPLE DESIGN.	(FT)	(IN.)	REMARKS
(a)	(FT) (b)		(c)			(ppm)		(e)	(f)	(g)	
SM			0-9 inches - sandy SILT, dark brown, moist			0.0					
014			ACCOST IN CAMP 15 / C					SS-03-0-1 @ 0850			
SM	2		10-30 inches - silty SAND, white/orange, fine to medium g	rained		0.0					
SM			28-31 inches - sandy SILT, orange mottled with black, len	ses of c	lay,	0.0					
014			moist								
SM	4		32-42 sandy SILT, grey, well graded, moist			0.0			48	42	
SM			49-90 inches - sandy SILT, grey, well graded, moist			0.0		SS-03-4-5 @ 0855	10	72	
								Dup-01			
	6					0.0					
	0					0.0					
						0.0			40	40	
SM	0		97-124 inches -sandy SILT, grey, well graded, moist			0.0			48	42	
	4.0					0.0					
	10					0.0					
SP			125-144 inches - SAND, grey, trace silt, coarse, wet			0.0					
						0.0					
SM	12		145 102 inches silty CAND well graded growwhite set	rotod		0.0			48	48	
OIVI			145-192 inches - silty SAND, well graded, grey/white, satu	naieu		0.0					
						0.0					
	14					0.0					
						0.0					
						0.0					
	16								48	48	
				_							
PROJEC [*]	<u> </u>	Tvson F	acility			HOLE NO.:	SS 03		1		•

BODIN	IG/WELL L	OG.					HOLE NUMBER SS-06			
	ANY NAME	08	2	. DRILL SUE	BCONTRAC [*]	TOR	55-06			SHEET SHEETS
EA Eng				Freen Serv						1 OF 1
3. PROJE					4. PROPER	TY ADDR	ESS	5 / 6. ARE	A AND MEAS	JREMENTS
Tyson F					9943 Old Od					
	OF DRILLER				MANUFA Direct Pus		S DESIGNATION OF DRILL			
Don Marc		F DRILLING AND SAMPLING EQUIPMENT					TION AND CONDITIONS			
		core barrel sampler			10. 00111710	JE ELEVI	grass			
	_	F APPLICABLE					J			
PVC										
11. DIRE	CT READING PA	ARAMETERS: VOC- PID, ppm			12. DATE S	TARTED			COMPLETED	
14.0\/55	RBURDEN THIC	MAIFOO			6/9/2015	0001110	WATER ENCOUNTERED	6/9/2015		
NA	KBUKDEN I HIC	KNE55			15. DEPTH	GROUND	WATER ENCOUNTERED			
	H DRILLED INT	O ROCK				TO WATE	R AND ELAPSED TIME AFTER D	RILLING COM	PLETED	
NA					NA					
	L DEPTH OF H	OLE				WATER L	EVEL MEASUREMENTS (SPECI	FY)		
20 ft	I INCTALLEDA	IF OO OOMBLETE OOMSTRUCTION BLACKAM			NA OAMBUE E	/DE C+	. L			<u> </u>
20. WEL Yes	L INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM temporary			SAMPLE TY	PE: GI	AD .			
	PLE INTERVAL	i	MPLE INT	ERVAL AND	DESIGNAT	TION FOR	FIELD SCREENING ANALYSIS			LAB ANALYSIS
0-1	SS-06-		1 ft							SVOCs, PPL Metals
4-5	SS-06-						o o			
22. DISPO		IF NOT A WELL, BACKFILLED WITH: Soil cuttings and bentonite					23. GEOLOGIST Caron Mierczak			
		•			DIRECT R		ANALYTICAL	DEPTH	RECOVERY	
USCS LOG	DEPTH (FT)	DESCRIPTION OF MATERIALS			VOC (d)		SAMPLE DESIGN.	(FT)	(IN.)	REMARKS
(a)	(b)	(c)			(ppm)		(e)	(f)	(g)	
SW		0-10 inches - SAND, well graded, orange, rock/gravel th			0.0					
ML	-	11-44 inches - sandy SILT, light orange, fine to medium	grained		0.0		SS-06-0-1 @ 0950			
	2	†			0.0					
					0.0					
		+			0.0					
SM	4	45-84 inches - silty SAND, light orange, fine to medium	grained.		0.0			48	48	
		moist	g y		0.0		SS-06-4-5 @ 0955			
	6	+			0.0					
ML	U	85-114 inches - clayey SILT, trace SAND, light black/gre	ey,		0.0					
		saturated								
	8	+			0.0			48	48	
	U				0.0			40	40	
ML		115-130 inches - clayey SILT, light black, moist			0.0					
	10				0.0					
					0.0					
OL	12	145-160 inches - clayey SILT, black, organic, wet			0.0			48	34	
OL.		140 Hories diayey Ole 1, Black, Organio, wet			0.0					
SP		161-163 inches - SAND, trace silt, white/grey, coarse, w	vet		0.0					
	14				0.0					
		<u> </u>			0.0					
					0.0					
SM	16	400 000 in the CAND with OUT white/every well are			0.0			48	19	
SIVI	-	193 - 222 inches - SAND with SILT, white/grey, well gra	adea,		0.0					
					0.0					
	18									
		1			0.0					
	-	†			0.0					
	20							48	30	
	l —	1								
		†								
									1	
		1								
		†								
		<u>† </u>							<u> </u>	
PROJEC [*]	T: Tyson	Facility			HOLE NO.:	SS-06	<u> </u>			·

BODIN	IG/WELL L	06				HOLE NUMBER			
	ANY NAME	09	2 DRI	ILL SUBCONTRAC	TOR	SS-07			SHEET SHEETS
EA Engi				n Services	TOR				1 OF 1
3. PROJE				4. PROPER	TY ADDR	ESS	5 / 6. ARE	A AND MEAS	
Tyson F	acility			9943 Old Od	cean City	Boulevard			
	OF DRILLER					S DESIGNATION OF DRILL			
Don Marc				Direct Pus					
		F DRILLING AND SAMPLING EQUIPMENT		10. SURFAC	CE ELEVA	ATION AND CONDITIONS			
	-	core barrel sampler F APPLICABLE				asphalt			
PVC	LINER USED, I	FAPPLICABLE							
	CT READING PA	ARAMETERS: VOC- PID, ppm		12. DATE S	TARTED		13. DATE (COMPLETED	
				6/9/2015			6/9/2015		
14. OVER	RBURDEN THIC	KNESS		15. DEPTH	GROUND	WATER ENCOUNTERED			
NA				6 ft					
	H DRILLED INT	OROCK			TO WATE	R AND ELAPSED TIME AFTER D	RILLING COM	PLETED	
NA 10 TOTA		0.5		NA		51/51 1/51 01/551 51/51 (0.550)			
	L DEPTH OF H	OLE		19. OTHER NA	WATERI	EVEL MEASUREMENTS (SPECII	-Y)		
12 ft 20 WELL	I INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		SAMPLE TY	PF: Gr	ah			
No	L INOTALLED:	III GO GOIVII EETE GONOTIKOOTION BIAGKAWI		JOANNI EE 11	1 L. OI	20			
	PLE INTERVAL	AND DESIGNATION FOR LAB ANALYSIS SAM	IPLE INTERV	AL AND DESIGNA	TION FOR	R FIELD SCREENING ANALYSIS			LAB ANALYSIS
0-1	SS-07-	0-1	1 ft						SVOCs, PPL Metals, VOCs
4-5	SS-07-								
22. DISPO		IF NOT A WELL, BACKFILLED WITH: Soil cuttings and bentonite				23. GEOLOGIST Caron Mierczak			
OI TIOLL		Con outlings and bornomic		DIRECT R	EADING	ANALYTICAL	DEPTH	RECOVER'	Y
	DEPTH	DESCRIPTION OF MATERIALS		VOC (d)	1	SAMPLE DESIGN.	(FT)	(IN.)	REMARKS
LOG (a)	(FT) (b)	(c)		(ppm)		(e)	(f)	(g)	
		0-10 inches - asphalt mixed with black silty GRAVEL/SAI	ND, moist	0.0					
						SS-07-0-1 @ 1035			
ML		11-75 inches - silty CLAY, light grey mottled orange, med	dium soft	0.0					
	2			0.0					
		†		0.0					
				0.0					
	4			2.2		00.07.4.5.@ 40.40	48	48	
				0.0		SS-07-4-5 @ 1040			
		†		0.0					
	6								
SM		76-85 inches - silty SAND, yellowish white, well graded,	saturated	0.0					
		†		0.0					
	8						48	37	
ML		97-104 inches - clayey SILT, trace SAND, grey/white, sa	turated	0.0					
		1							
	10			0.0					
	10			0.0					
		<u> </u>		0.0			40		
	12						48	8	
		1							
	<u> </u>	†							
		1							
		1							
		†							
		<u> </u>			<u> </u>				
		<u> </u>							
		†							
							+		+
		†							
DD 2 :=:	<u></u>				00.5-				
PROJEC [*]	T: Tvson	Facility		HOLE NO.:	SS-07				

BORIN	IC/WI	FI I I (ng				HOLE NUMBER SS-08			
1. COMP.			 	2. DRILL SU	IBCONTRAC	TOR	100 00			SHEET SHEETS
EA Eng	ineerin	g		Green Ser						1 OF 1
3. PROJE	CT				4. PROPER	TY ADDR	ESS	5 / 6. ARE	A AND MEASU	JREMENTS
Tyson F					9943 Old O					
7. NAME		LLER			1		S DESIGNATION OF DRILL			
Don Marc		VDEC 01	F DDILLING AND CAMPLING FOLIDMENT		Direct Pus		TION AND CONDITIONS			
			F DRILLING AND SAMPLING EQUIPMENT core barrel sampler		10. SURFAC		TION AND CONDITIONS asphalt			
			F APPLICABLE				аѕрпан			
PVC	LINEIX	OOLD, I	THE LIGHTLE							
	CT REA	DING PA	ARAMETERS: VOC- PID, ppm		12. DATE S	TARTED		13. DATE (COMPLETED	
					6/9/2015			6/9/2015		
14. OVEF	RBURDE	N THIC	KNESS		15. DEPTH	GROUND	WATER ENCOUNTERED			
NA					4 ft					
16. DEPT	'H DRILI	LED INT	O ROCK			TO WATE	R AND ELAPSED TIME AFTER D	RILLING COM	PLETED	
NA 18. TOTA	L DEDT	'U OF U			NA 10 OTHER	WATERI	EVEL MEASUREMENTS (SPECII	=V\		
8 ft	LDEFI	HOFIK	JLE.		NA	WATER	EVEL WEASONEWENTS (SPECI	1)		
	L INSTA	LLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		SAMPLE TY	/PE: Gra	ab			
No										
21. SAMF	PLE INT	ERVAL A	AND DESIGNATION FOR LAB ANALYSIS SAMPLE	INTERVAL AN	ID DESIGNA	TION FOR	FIELD SCREENING ANALYSIS			LAB ANALYSIS
0-1		SS-08-	0-1 1 ft							SVOCs, PPL Metals, TPH-DRO
4-5 22. DISP	OCITION	SS-08-	4-5 IF NOT A WELL, BACKFILLED WITH:				23. GEOLOGIST			
OF HOLE		N	Soil cuttings and bentonite				Caron Mierczak			
					DIRECT R		ANALYTICAL	DEPTH	RECOVERY	
USCS LOG	DEPTH (FT)	1	DESCRIPTION OF MATERIALS		VOC (d))	SAMPLE DESIGN.	(FT)	(IN.)	REMARKS
(a)	(b)		(c)		(ppm)		(e)	(f)	(g)	
		_	0-7 inches - ASPHALT		0.0					
SM			8-29 inches - SAND with SILT, orangish brown, coarse, wet,	with 2			SS-08-0-1 @ 1105			
	2		inches concrete at bottom		0.0		Dup-02			
	_				0.0					
	,				0.0			40		
SM	4		49-66 inches - silty SAND, well graded, brown with pebbles,		0.0		SS-08-4-5 @ 1110	48	29	
O			saturated, slight odor (processing plant)		0.0		00 00 10 0 1110			
					0.0					
	6									
					0.0					
					0.0					
	8							48	18	
			REFUSAL @ 8 ft							
							<u> </u>			
			 							
			<u> </u>							
	<u> </u>									
			 							
			 							
PROJEC [*]	T:	Tvson I	L Facility		HOLE NO.:	SS-08	1	1	1	

BORIN	IC/WE	FI I 1 4	OG.				HOLE NUMBER SS-09			
1. COMP.				2. DRILL SU	JBCONTRAC	TOR	00°08			SHEET SHEETS
EA Eng			<u> </u>	Green Ser						1 OF 1
3. PROJE					4. PROPER	TY ADDR	ESS	5 / 6. AREA	A AND MEAS	JREMENTS
Tyson F					9943 Old O					
7. NAME		LLER					S DESIGNATION OF DRILL			
Don Marc		VDES O	F DRILLING AND SAMPLING EQUIPMENT		Direct Pus		TION AND CONDITIONS			
			core barrel sampler		IU. SUKFAL	JE ELEVA	concrete			
			F APPLICABLE							
PVC										
11. DIRE	CT REA	DING PA	ARAMETERS: VOC- PID, ppm		12. DATE S	TARTED			COMPLETED	
			W. 1700		6/9/2015			6/9/2015		
14. OVEF NA	KBURDE	N THIC	KNESS		15. DEPTH 3.5 ft	GROUND	WATER ENCOUNTERED			
NA 16. DEPT	H DRII I	LED INT	O ROCK			TO WATE	R AND ELAPSED TIME AFTER I	ORILLING COMI	PLETED	
NA			 		NA		D LE U GLD IIME /U IEN I			
18. TOTA	L DEPT	H OF H	DLE		19. OTHER	WATER L	EVEL MEASUREMENTS (SPEC	IFY)		
8 ft					NA					T
	L INSTA	LLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		SAMPLE TY	/PE: Gra	ab			
No 21 SAME	DI E INITI	ED\/^! /	AND DESIGNATION FOR LAB ANALYSIS SAMPLE	INTEDVAL AND	ID DESIGNA.	TION FOR	FIELD SCREENING ANALYSIS			LAB ANALYSIS
21. SAME 0-1	- LE IIVII	SS-09-		. IINI ERVAL AN	אוטופאט טו	I ION FOR	FIELD SCREENING ANALYSIS			SVOCs, PPL Metals, VOCs,
4-5		SS-09-	4-5						TPH-DRO	
22. DISP			IF NOT A WELL, BACKFILLED WITH:				23. GEOLOGIST			•
OF HOLE	- 		Soil cuttings and bentonite		DIRECT R	EADING	Caron Mierczak ANALYTICAL	DEPTH	RECOVER	(
USCS	DEPTH	1	DESCRIPTION OF MATERIALS		(d)		SAMPLE DESIGN.	(FT)	(IN.)	REMARKS
LOG (a)	(FT) (b)		(c)		VOC (ppm)		(e)	(f)	(g)	
, , ,			0-6 inches - CONCRETE		0.0		1-7	,	\3/	
SP			7-36 inches - SAND, medium to coarse, light orange, wet,				SS-09-0-1 @ 1215			
	2		last 8 inches saturated		0.0					
	_				0.0					
	4				0.0			,,		
SP	4		49-64 inches - SAND medium to coarse, light orange, satura	ted	0.0		SS-09-4-5 @ 1220	48	36	
J.					3.5		1220			
ML			65-80 inches - clayey SILT, trace SAND, greyish black, satu	rated	0.0					
	6				0.0					
SM			81-96 inches - silty SAND, medium grained, grey, wet		0.0					
			, , , , , , , , , , , , , , , , , , , ,		0.0					
	8				<u> </u>			48	48	
			 							
					<u> </u>					
			 							
			 							
					<u> </u>					
			†							
			 							
			•							
PROJEC [*]	 T-	Tvson f	Facility		HOLE NO.:	99.00	<u> </u>		1	<u> </u>
I NOJEC	i.	i vson l	CIVALLY		HINCLE NO.:	เวเว-เมช				

BODIN	IG/WELL L	OG.					HOLE NUMBER SS-10			
	ANY NAME	08	2	DRILL SUB	CONTRACT	TOR	33-10			SHEET SHEETS
EA Eng				reen Serv						1 OF 1
3. PROJE					4. PROPER	TY ADDR	ESS	5 / 6. AREA	A AND MEASU	
Tyson F	acility			ç	9943 Old Oc	ean City I	Boulevard			
7. NAME	OF DRILLER						S DESIGNATION OF DRILL			
Don Marc					Direct Pus					
		F DRILLING AND SAMPLING EQUIPMENT		,	10. SURFAC	E ELEVA	TION AND CONDITIONS			
	-	core barrel sampler					asphalt			
PVC	LINER USED, I	F APPLICABLE								
	CT READING P	ARAMETERS: VOC- PID, ppm			12. DATE S	TARTED		13 DATE	COMPLETED	
III. DIIKE	OT READING T	ANAMETERO. VOO TIB, PPIII			6/9/2015	IAITIED		6/9/2015	JOINII LETED	
14. OVEF	RBURDEN THIC	KNESS				GROUND	WATER ENCOUNTERED	0/0/2010		
NA				8	8 ft					
16. DEPT	H DRILLED INT	O ROCK		,	17. DEPTH	TO WATE	R AND ELAPSED TIME AFTER D	RILLING COM	PLETED	
NA					NA					
	L DEPTH OF H	OLE				WATER L	EVEL MEASUREMENTS (SPECI	FY)		
12 ft		I			NA	0				
	L INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		\$	SAMPLE TY	PE: Gra	ND .			
No 21 SAME	DI E INITED\/AI	AND DESIGNATION FOR LAB ANALYSIS SAM	MDI E INITE	EDVAL AND	DESIGNAT	TION FOR	FIELD SCREENING ANALYSIS			LAB ANALYSIS
0-1	SS-10-		1 ft	ERVAL AND	DESIGNAI	ION FOR	FIELD SCREENING ANALTSIS			SVOCs, PPL Metals, VOCs,
4-5	SS-10-									TPH-DRO
22. DISP	OSITION	IF NOT A WELL, BACKFILLED WITH:					23. GEOLOGIST			1
OF HOLE	1	Soil cuttings and bentonite		ı	DIRECT RI	EADING	Caron Mierczak ANALYTICAL	DEPTH	IDECOVED	
USCS	DEPTH	DESCRIPTION OF MATERIALS			(d)	EADING	SAMPLE DESIGN.	(FT)	RECOVERY (IN.)	REMARKS
LOG	(FT)			Ī	VOC		()			
(a)	(b)	(c) 0-2 inches - ASPHALT		,	(ppm) 0.0		(e)	(f)	(g)	
SP		3-27 inches - SAND, fine to medium grained, black			0.0		SS-10-0-1 @ 1140			
O1		odor (naphthalene)		3	3.0		00 10 0 1 6 1140			
	2									
				(0.0					
SM		28-36 inches - SILT, trace SAND, grey, fine to medium	grained		0.0					
	4	1			0.0			48	36	
SM		49-69 inches - SILT, trace SAND, grey, fine to medium	grained	(0.0		SS-10-4-5 @ 1145 MS/MSD			
				(0.0					
SM	6	70-87 inches - silty SAND, fine to medium grained, wet,	grey		0.0					
					0.0					
sc		88-96 inches - sandy SILT with CLAY, stiff, grey		(0.0					
	8							48	48	
SM		97-144 inches - silty SAND, grey, saturated		(0.0					
	-	†			0.0					
	10	†			0.0					
				(0.0					
	l —	1			0.0					
	12	+		(0.0			48	48	
	T							1.0	1	
	l —	1								
	 								1	1
	l —	†								
]								
		1								
		†								
		†								
	l	1								
		1								
				+						
		1								
									-	
	<u> </u>	1								
		†								
PROJEC [*]	T: Tyson	Facility			HOLE NO.:	SS-10				

Appendix E Groundwater Purge Logs

WELL PURGING AND SAMPLING RECORD

ATE C/1	0/2015	TIME	1220			AID TEM	D 1	00-		
ATE <u>6/1</u>	.0/2015	TIME	1230		_	AIR TEM	P. <u>lov</u>	v 90s		
		19.32							ft	
ATER DI	EPTH _	14.73		ft	WEL	L DIAMI	ETER <u>1.0</u>)	in	
		GHT <u>4.59</u>							in	
		LUME OF S								
		0.25								
		minutes								
		? () Y							m	
	_	7.0							m	in
URGE AC	iAIN?	()Ye	s (X) I	No	ТОТ	AL VOL.	KEMOVE	ഇ	7.0 L	
		Volume				<u> </u>	1		Depth to	Pump
		Removed	pН	Cond.	Temp.	ORP	Turb.	DO	Water	Rate
Date	Time	Unit: L	-	μS/cm	°C	mV	NTU	mg/L	from TOC	LPM
6/10/15	1247	0.0	6.44	359	16.87	48.9	58.8	2.31		0.25
6/10/15	1251	1.0	4.58	280	13.83	102.7	476.8	4.02		0.25
6/10/15	1255	2.0	4.52	279	13.83	102.2	608.7	3.57		0.25
6/10/15	1259	3.0	4.76	294	14.91	83.0	1036.9	4.08		0.25
6/10/15	1303	4.0	5.04	289	14.46	68.6	543.1	5.29		0.25
6/10/15	1307	5.0	5.04	297	15.54	65.5	281.2	5.84		0.25
6/10/15	1311	6.0	5.06	298	15.82	59.8	252.5	6.30		0.25
6/10/15	1315	7.0	5.08	299	15.90	57.5	223.0	6.50		0.25
	1		·I	I.			ı		1	I.
OMMEN	ΓS	No de	pth to wat	er readings	because	IFP could	not fit in v	vell with t	ubing. MS	/MSD
ollected. S	Sampled a	at 1315.								

WELL PURGING AND SAMPLING RECORD

WELL ID _ WELL/SITI		W-04 RIPTION							7-04	
DATE <u>6/1</u>	0/2015	TIME	_1030			AIR TEM	P. <u>lov</u>	v 90s		
WATER DI WATER CO	EPTH OL. HEIO	14.6 9.23 GHT <u>5.37</u>		ft ft	WEL SAN	L DIAMI DPACK I	ETER <u>1.0</u> DIAM. <u>N</u> A	A		
PUMP RAT PUMP TIM VELL WEI VOL. REM	E E32 NT DRY OVED _	0.10 minutes ? () Yo 2.4 ()Ye	es (X) N	Jo L	PUM REC	IP TIME OVERY 1	TIME	32		min n
Data	Time	Volume Removed Unit: L	pH -	Cond.	Temp.	ORP mV	Turb.	DO mg/L	Depth to Water from TOC	Pump Rate LPM
Date 6/10/15	1041	0.0	5.91	554	18.63	-13.3	205.0	3.67		0.10
6/10/15	1045	0.4	5.82	536	20.21	-13.0	376.0	6.07		0.10
6/10/15	1049	0.8	6.22	518	20.78	-26.7	1082.8	7.20		0.10
6/10/15	1053	1.2	6.36	512	21.05	-28.3	1084.6	7.94		0.10
6/10/15	1057	1.6	6.39	513	21.12	-29.6	1085.1	8.20		0.10
6/10/15	1101	2.0	6.40	515	21.19	-30.8	885.6	8.33		0.10
6/10/15	1105	2.4	6.40	516	21.23	-32.0	861.5	8.43		0.10
COMMENT		No de		er readings	s because]	FP could	not fit in v	vell with t	ubing. DUF	2-GW-01
ollected. S	ample co	ollected at 11	05.			SIGNATU	JRE			

Appendix F Analytical Results

29 June 2015

Jim Hulbert
EA Engineering, Science, and Technology, Inc.
225 Schilling Circle, Suite 400
Hunt Valley, MD 21031

RE: Tyson Chicken

Enclosed are the results of analyses for samples received by the laboratory on 06/10/2015 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sonya Gordon

Project Manager

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert **Reported:** 06/29/2015 10:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS-02-0-1	1506109-01	Solid	06/09/2015 09:25	06/10/2015 09:00
SS-02-4-5	1506109-02	Solid	06/09/2015 09:30	06/10/2015 09:00
SS-03-0-1	1506109-03	Solid	06/09/2015 08:50	06/10/2015 09:00
SS-03-4-5	1506109-04	Solid	06/09/2015 08:55	06/10/2015 09:00
SS-06-0-1	1506109-05	Solid	06/09/2015 09:50	06/10/2015 09:00
SS-06-4-5	1506109-06	Solid	06/09/2015 09:55	06/10/2015 09:00
SS-07-0-1	1506109-07	Solid	06/09/2015 10:35	06/10/2015 09:00
SS-07-4-5	1506109-08	Solid	06/09/2015 10:40	06/10/2015 09:00
SS-08-0-1	1506109-09	Solid	06/09/2015 11:05	06/10/2015 09:00
SS-08-4-5	1506109-10	Solid	06/09/2015 11:10	06/10/2015 09:00
SS-10-0-1	1506109-11	Solid	06/09/2015 11:40	06/10/2015 09:00
SS-10-4-5	1506109-12	Solid	06/09/2015 11:45	06/10/2015 09:00
SS-09-0-1	1506109-13	Solid	06/09/2015 12:15	06/10/2015 09:00
SS-09-4-5	1506109-14	Solid	06/09/2015 12:20	06/10/2015 09:00
DUP-01	1506109-15	Solid	06/09/2015 00:00	06/10/2015 09:00
DUP-02	1506109-16	Solid	06/09/2015 00:00	06/10/2015 09:00

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 2 of 109

EA Engineering, Science, and Technology, Inc.

Project: Tyson Chicken

225 Schilling Circle, Suite 400

Project Number: EAE_Tyson

Hunt Valley MD, 21031

Project Manager: Jim Hulbert

The samples were received and processed using normal regulatory and laboratory protocols. Unless noted in the Final Report, there were no significant data anomalies or failures noted during data assessment and reporting. The results within this report relate only to the samples received and reported for this project and this report shall not be reproduced except in full, without the approval of Empirical Laboratories, LLC. The test results meet all requirements of NELAC unless otherwise noted. Data uncertainty is linked to the method and regulatory mandated quality control data associated with the sample. Prior to accepting a Project, Empirical Laboratories, LLC verifies certification requirements and where applicable ensures that the requirements are in place prior to sample analysis. Many states do not carry matrix or program specific certifications. A listing of certifications held by Empirical Laboratories, LLC is included at the end of this report.

Reported:

06/29/2015 10:43

Samples were subcontracted to Accutest Laboratories in Orlando FL for Herbicide analysis by method SW 846 8151A.

SW6010C

The QC for the Matrix Spike and Matrix Spike Duplicate exceeded criteria in batch 5F16726 for Antimony. Associated samples are flagged with an N qualifier.

SW8081B

To reduce matrix interference, the sample extracts have undergone copper clean-up, method 3660, which is specific to sulfur contamination.

Endrin shows a potential positive bias on a reported concentration exceeding the higher control limit on the high side for CCVs. Associated data are flagged with an X qualifier.

Alpha-BHC, beta-BHC, and gamma-Chlordane were detected in blank 5F16704-BLK1. Associated samples are qualified with a B flag. See included QC for details.

Sample matrix interfered with the quantitation of beta-BHC, gamma-Chlordane, and Heptachlor epoxide in sample 1506109-01. Sample matrix interfered with the quantitation of beta-BHC and gamma-Chlordane in sample 1506109-02. Results are reported from the column with the lower concentration and qualified with an M.

Recovery for surrogate TCMX on the secondary column was outside the acceptable range in sample 1506109-02. The surrogate is qualified with an "*" flag. See included QC for details.

SW8270D

Surrogate 2,4,6-Tribromophenol shows a potential positive bias on a reported concentration exceeding the higher control limit on the high side for CCVs. Associated data are flagged with an X qualifier.

Recovery for surrogate 2,4,6-Tribromophenol was outside the acceptable range in sample 1506109-10. The surrogate is qualified with an "*" flag. See included QC for details.

SW8260B

The QC for the Matrix Spike and Matrix Spike Duplicate exceeded criteria in batch 5F15915 for multiple compounds. Associated compounds are flagged with an N qualifier. Due to the number of compounds exceeding criteria, the Sample, Matrix Spike and Matrix Spike Duplicate were reanalyzed in batch 5F17003 with multiple comounds still exceeding criteria.

The QC exceeded criteria in batch 5F17003 for Acetone. Associated samples are qualified with a Q qualifier.

Bromomethane and 1,1,2,2-Tetrachloroethane show a potential positive bias on a reported concentration exceeding the higher control limit on the high side for CCVs. Associated data are flagged with an X qualifier.

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 3 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

06/29/2015 10:43

Reported:

SS-02-0-1 1506109-01 (Solid)

Project Manager: Jim Hulbert

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborator	ies, LL	C					
Classical Chemistry Parameters										
% Solids	85	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.16	2.32 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	0.832	0.696	2.32 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.232	1.16 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.232	1.16 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	6.41	0.464	2.32 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	2.21	0.929	2.32 m	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	6.08	0.348	1.16 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	2.13	0.696	2.32 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.696	2.32 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.232	2.32 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Thallium	ND	0.696	1.86 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	5.69	1.16	4.64 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0143	0.0363 m	g/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Organochlorine Pesticides and PCBs by	y GC									C
4,4'-DDE [2C]	0.855	0.194	0.764 u	g/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
1,4'-DDD	ND	0.194	0.764 ug	g/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
4,4'-DDT	0.845	0.194	0.764 u	g/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Aldrin [2C]	0.913	0.125	0.764 u	g/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
alpha-BHC [2C]	0.377	0.125	0.764 ug	g/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	E
alpha-Chlordane	ND	0.125	0.764 ug	g/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
beta-BHC	0.749	0.125	0.764 u		1	5F16704	06/16/15	06/20/15	SW8081B	ВЛ
delta-BHC [2C]	ND	0.125	0.764 ug		1	5F16704	06/16/15	06/20/15	SW8081B	
Dieldrin [2C]	0.302	0.194	0.764 u		1	5F16704	06/16/15	06/20/15	SW8081B	
Endosulfan I	ND	0.125	0.764 ug		1	5F16704	06/16/15	06/20/15	SW8081B	
Endosulfan II [2C]	ND	0.194	0.764 ug		1	5F16704	06/16/15	06/20/15	SW8081B	
Endosulfan sulfate	4.33	0.194	0.764 u		1	5F16704	06/16/15	06/20/15	SW8081B	
Endrin	ND	0.194	0.764 ug		1	5F16704	06/16/15	06/20/15	SW8081B	U
Endrin aldehyde [2C]	ND	0.194	0.764 ug		1	5F16704	06/16/15	06/20/15	SW8081B	
Endrin ketone [2C]	ND	0.194	0.764 ug			5F16704	06/16/15	06/20/15	SW8081B	
gamma-BHC (Lindane) [2C]	0.597	0.125	0.764 u			5F16704	06/16/15	06/20/15	SW8081B	
gamma-Chlordane [2C]	0.288	0.125	0.764 u			5F16704	06/16/15	06/20/15	SW8081B	ВЛ
Heptachlor	ND	0.125	0.764 u			5F16704	06/16/15	06/20/15	SW8081B	
•								06/20/15		
Heptachlor epoxide	0.614	0.125	0.764 u	g/Kg drv	1	5F16704	06/16/15	00/20/13	SW8081B	JN

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-02-0-1 1506109-01 (Solid)

Reporting

		1.007	Reporting	-					
Analyte	Result	MDL	Limit Units	Dilution	n Batch	Prepared	Analyzed	Method	Notes
		Empirical I	aboratories, L	LC					
Organochlorine Pesticides and PCBs by	y GC								C8
Chlordane (n.o.s.)	ND	0.650	3.80 ug/Kg di	y 1	5F16704	06/16/15	06/20/15	SW8081B	U
Toxaphene	ND	12.5	37.6 ug/Kg di	y 1	5F16704	06/16/15	06/20/15	SW8081B	U
Surrogate: Tetrachloro-m-xylene		86.9 %	70-125	i	5F16704	06/16/15	06/20/15	SW8081B	
Surrogate: Tetrachloro-m-xylene [2C]		83.9 %	70-125	i	5F16704	06/16/15	06/20/15	SW8081B	
Surrogate: Decachlorobiphenyl		91.3 %	55-130)	5F16704	06/16/15	06/20/15	SW8081B	
Surrogate: Decachlorobiphenyl [2C]		103 %	55-130)	5F16704	06/16/15	06/20/15	SW8081B	
Semivolatile Organic Compounds by G	C/MS								
Acenaphthene	ND	92.9	371 ug/Kg di	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Acenaphthylene	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Acetophenone	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
Anthracene	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Atrazine	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Benzaldehyde	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(a)anthracene	ND	92.9	371 ug/Kg di	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(a)pyrene	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(b)fluoranthene	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(g,h,i)perylene	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(k)fluoranthene	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
1,1-Biphenyl	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
4-Bromophenyl-phenylether	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Butylbenzylphthalate	ND	92.9	371 ug/Kg di	•	5F12003	06/15/15	06/16/15	SW8270D	U
Caprolactam	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Carbazole	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
4-Chloro-3-methylphenol	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chloroaniline	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
2-Chloronaphthalene	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
2-Chlorophenol	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	92.9	371 ug/Kg di	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Chrysene	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
Dibenz(a,h)anthracene	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
Dibenzofuran	ND	92.9	371 ug/Kg di	-	5F12003	06/15/15	06/16/15	SW8270D	U
Di-n-butylphthalate	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dichlorophenol	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
Diethylphthalate	ND	92.9	371 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dimethylphenol	ND	371	1480 ug/Kg di		5F12003	06/15/15	06/16/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken Project Number: EAE Tyson

Reported: 06/29/2015 10:43

SS-02-0-1 1506109-01 (Solid)

Project Manager: Jim Hulbert

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Empirical Laboratories, LLC Semivolatile Organic Compounds by GC/MS ND 92.9 371 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U Dimethyl phthalate 5F12003 06/15/15 06/16/15 SW8270D U 4,6-Dinitro-2-methylphenol ND 929 3710 ug/Kg dry 2,4-Dinitrophenol ND 929 3710 ug/Kg dry 1 5F12003 06/15/15 06/16/15 SW8270D U 92.9 5F12003 06/15/15 06/16/15 SW8270D U 2,4-Dinitrotoluene ND ug/Kg dry 2,6-Dinitrotoluene ND 92.9 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 5F12003 06/15/15 06/16/15 SW8270D U Di-n-octylphthalate ND 92.9 371 ug/Kg dry U Bis(2-ethylhexyl)phthalate ND 92.9 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D 5F12003 06/15/15 06/16/15 SW8270D U Fluoranthene ND 92.9 ug/Kg dry 1 5F12003 06/15/15 06/16/15 U SW8270D Fluorene ND 92.9 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U ND 92.9 Hexachlorobenzene 371 ug/Kg dry ND 5F12003 06/15/15 06/16/15 SW8270D U 92.9 Hexachlorobutadiene ug/Kg dry ND 92.9 371 5F12003 06/15/15 06/16/15 SW8270D U Hexachlorocyclopentadiene ug/Kg dry 1 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U Hexachloroethane ND 92.9 Indeno(1,2,3-cd)pyrene ND 92.9 371 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 5F12003 06/15/15 06/16/15 SW8270D U Isophorone ND 92.9 371 ug/Kg dry 2-Methylnaphthalene ND 92.9 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 5F12003 06/15/15 06/16/15 SW8270D U 2-Methylphenol ND 92.9 ug/Kg dry 1 5F12003 06/16/15 SW8270D U 4-Methylphenol ND 92.9 ug/Kg dry 1 06/15/15 5F12003 06/15/15 06/16/15 SW8270D U ND 92.9 Naphthalene ug/Kg dry 371 5F12003 06/15/15 06/16/15 U 4-Nitroaniline ND SW8270D 1480 ug/Kg dry 1480 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 3-Nitroaniline ND 371 1 2-Nitroaniline ND 371 1480 ug/Kg dry 1 5F12003 06/15/15 06/16/15 SW8270D U Nitrobenzene ND 92.9 371 5F12003 06/15/15 06/16/15 SW8270D U ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 4-Nitrophenol ND 371 1480 ug/Kg dry 2-Nitrophenol ND 92.9 371 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 92.9 5F12003 06/15/15 06/16/15 SW8270D U N-Nitrosodiphenylamine ND ug/Kg dry N-Nitroso-di-n-propylamine ND 92.9 ug/Kg dry 5F12003 06/15/15 06/16/15 SW8270D U 5F12003 06/16/15 06/15/15 SW8270D U Pentachlorophenol ND 371 1480 ug/Kg dry 5F12003 06/16/15 U Phenanthrene ND 92.9 ug/Kg dry 06/15/15 SW8270D 5F12003 06/15/15 06/16/15 U SW8270D Phenol ND 92.9 ug/Kg dry 1 5F12003 06/15/15 06/16/15 SW8270D U Pyrene ND 929 ug/Kg dry 2,4,6-Trichlorophenol 5F12003 06/15/15 06/16/15 SW8270D U ND 92.9 371 ug/Kg dry 371 ug/Kg dry 5F12003 06/16/15 2,4,5-Trichlorophenol ND 92.9 06/15/15 SW8270D U 5F12003 06/15/15 06/16/15 Surrogate: 2-Fluorobiphenyl 71.2 % 45-105 SW8270D 5F12003 06/15/15 06/16/15 Surrogate: 2-Fluorophenol 64.3 % 35-105 SW8270D 63.0 % 35-100 5F12003 06/15/15 06/16/15 SW8270D Surrogate: Nitrobenzene-d5 5F12003 06/15/15 06/16/15 40-100 Surrogate: Phenol-d6 65.4 % SW8270D 5F12003 06/15/15 06/16/15 Surrogate: Terphenyl-d14 67.5 % 30-125 SW8270D 5F12003 06/15/15 06/16/15 Surrogate: 2,4,6-Tribromophenol 87.7% 35-125 SW8270D X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 6 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-02-0-1 1506109-01 (Solid)

		Re	porting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 7 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-02-4-5 1506109-02 (Solid)

Analyte	Result	MDL	Reporting Limi	_	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborato	ories, LL	С					
Classical Chemistry Parameters		•		,						
% Solids	83	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.15	2.30 1	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.19	0.691	2.30 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	0.256	0.230	1.15 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.230	1.15 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	10.1	0.460	2.30 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	2.44	0.921	2.30 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	8.84	0.345	1.15 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.24	0.691	2.30 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.691	2.30 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.230	2.30 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Гhallium	ND	0.691	1.84 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	7.53	1.15	4.60 1	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	0.0344	0.0152	0.0386 1	mg/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Organochlorine Pesticides and PCBs by	GC									(
4,4'-DDE [2C]	0.392	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
4,4'-DDD	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
4,4'-DDT	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Aldrin [2C]	0.455	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
alpha-BHC [2C]	0.298	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
alpha-Chlordane	ND	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
beta-BHC [2C]	0.161	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	Į
delta-BHC [2C]	ND	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Dieldrin	0.335	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Endosulfan I	ND	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Endosulfan II	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Endosulfan sulfate [2C]	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Endrin	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	Ţ
Endrin aldehyde	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
Endrin ketone	ND	0.196	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
gamma-BHC (Lindane) [2C]	0.355	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	
gamma-Chlordane [2C]	0.359	0.127	0.774	ug/Kg dry	1	5F16704	06/16/15	06/20/15	SW8081B	В
Heptachlor	ND	0.127		ug/Kg dry		5F16704	06/16/15	06/20/15	SW8081B	
Heptachlor epoxide	ND	0.127		ug/Kg dry		5F16704	06/16/15	06/20/15	SW8081B	
Methoxychlor [2C]	ND	0.127		ug/Kg dry		5F16704	06/16/15	06/20/15	SW8081B	
Chlordane (n.o.s.)	ND	0.658		ug/Kg dry		5F16704	06/16/15	06/20/15	SW8081B	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-02-4-5 1506109-02 (Solid)

Reporting

Analyte	Result	MDL	Limit U	nits Dilutio	on Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories,	LLC					
Organochlorine Pesticides and PCBs by	GC								C8
Toxaphene	ND	12.7	38.1 ug/Kg	dry 1	5F16704	06/16/15	06/20/15	SW8081B	U
Surrogate: Tetrachloro-m-xylene		70.9 %	70-	125	5F16704	06/16/15	06/20/15	SW8081B	
Surrogate: Tetrachloro-m-xylene [2C]		68.7 %	70-	125	5F16704	06/16/15	06/20/15	SW8081B	*
Surrogate: Decachlorobiphenyl		72.0 %	55-	130	5F16704	06/16/15	06/20/15	SW8081B	
Surrogate: Decachlorobiphenyl [2C]		85.8 %	55-	130	5F16704	06/16/15	06/20/15	SW8081B	
Semivolatile Organic Compounds by GC	Z/MS								
Acenaphthene	ND	97.7	390 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Acenaphthylene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Acetophenone	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Anthracene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Atrazine	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzaldehyde	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(a)anthracene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(a)pyrene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(b)fluoranthene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(g,h,i)perylene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(k)fluoranthene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
1,1-Biphenyl	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Bromophenyl-phenylether	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Butylbenzylphthalate	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Caprolactam	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Carbazole	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chloro-3-methylphenol	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chloroaniline	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Chloronaphthalene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Chlorophenol	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Chrysene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Dibenz(a,h)anthracene	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Dibenzofuran	ND	97.7	390 ug/Kg	dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Di-n-butylphthalate	ND	97.7	390 ug/Kg	-	5F12003	06/15/15	06/16/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	97.7	390 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dichlorophenol	ND	97.7	390 ug/Kg		5F12003	06/15/15	06/16/15	SW8270D	U
Diethylphthalate	ND	97.7	390 ug/Kg		5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dimethylphenol	ND	390	1560 ug/Kg		5F12003	06/15/15	06/16/15	SW8270D	U
Dimethyl phthalate	ND	97.7	390 ug/Kg		5F12003	06/15/15	06/16/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-02-4-5 1506109-02 (Solid)

			Reportin	ng						
Analyte	Result	MDL	Lin	nit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	aborat	ories, LL	C					
Semivolatile Organic Compounds by GC/MS										
4,6-Dinitro-2-methylphenol	ND	977	3900	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dinitrophenol	ND	977	3900	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dinitrotoluene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,6-Dinitrotoluene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Di-n-octylphthalate	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Fluoranthene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Fluorene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorobenzene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorobutadiene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorocyclopentadiene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachloroethane	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Isophorone	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Methylnaphthalene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Methylphenol	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Methylphenol	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Naphthalene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Nitroaniline	ND	390	1560	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
3-Nitroaniline	ND	390	1560	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Nitroaniline	ND	390	1560	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Nitrobenzene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Nitrophenol	ND	390	1560	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Nitrophenol	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
N-Nitrosodiphenylamine	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Pentachlorophenol	ND	390	1560	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenanthrene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenol	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Pyrene	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,6-Trichlorophenol	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,5-Trichlorophenol	ND	97.7	390	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		73.2 %		45-105		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2-Fluorophenol		66.6 %		35-105		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Nitrobenzene-d5		65.3 %		35-100		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Phenol-d6		67.5 %		40-100		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Terphenyl-d14		67.9 %		30-125		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		90.2 %		35-125		5F12003	06/15/15	06/16/15	SW8270D	X

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

03-0-1

SS-03-0-1 1506109-03 (Solid)

Reporting

			Reporting	8						
Analyte	Result	MDL	Limi	t Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	ıl Laborato	ories, LL	C					
Classical Chemistry Parameters										
% Solids	87	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.08	2.16 r	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	NU
Arsenic	0.755	0.647	2.16 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	J
Beryllium	ND	0.216	1.08 r	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	U
Cadmium	ND	0.216	1.08 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	U
Chromium	7.31	0.432	2.16 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	1.04	0.863	2.16 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	J
Lead	10.8	0.324	1.08 r	mg/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	1.79	0.647	2.16 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	J
Selenium	ND	0.647	2.16 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	U
Silver	ND	0.216	2.16 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	U
Thallium	ND	0.647	1.73 r	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	U
Zinc	5.93	1.08	4.32 r	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0161	0.0408 r	ng/Kg dry	, 1	5F15934	06/15/15	06/17/15	SW7471B	U
Volatile Organic Compounds by GC/MS										
Acetone	23.9	4.13	16.5	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Bromodichloromethane	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Bromoform	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Bromomethane	ND	2.06	8.26	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
2-Butanone	ND	2.06	8.26	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Carbon disulfide	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Carbon tetrachloride	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Chlorobenzene	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Chloroethane	ND	2.06	8.26	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Chloroform	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Chloromethane	ND	2.06	8.26	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Cyclohexane	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Dibromochloromethane	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dibromo-3-chloropropane	ND	2.06	8.26	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dibromoethane (EDB)	ND	1.03	4.13	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichlorobenzene	ND	1.03		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,3-Dichlorobenzene	ND	1.03		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,4-Dichlorobenzene	ND	1.03		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Dichlorodifluoromethane	ND	2.06		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

06/29/2015 10:43

Reported:

SS-03-0-1 1506109-03 (Solid)

Project Manager: Jim Hulbert

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratoi	ries, LL	C					
Volatile Organic Compounds by GC/MS										
1,2-Dichloroethane	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
4-Methyl-2-pentanone	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Styrene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Toluene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.06	8.26 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.03	4.13 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		91.9 %		85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		106 %		80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		106 %		75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		90.5 %		85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 12 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project Number: EAE_Tyson
Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-03-0-1 1506109-03 (Solid)

			Reporting						
Analyte	Result	MDL	Limit U	nits Dilut	ion Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratories,	LLC					
Semivolatile Organic Compounds by GC/MS		_							
Acenaphthene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Acenaphthylene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Acetophenone	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Anthracene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Atrazine	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzaldehyde	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(a)anthracene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(a)pyrene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(b)fluoranthene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(g,h,i)perylene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Benzo(k)fluoranthene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
1,1-Biphenyl	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Bromophenyl-phenylether	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Butylbenzylphthalate	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Caprolactam	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Carbazole	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chloro-3-methylphenol	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chloroaniline	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Chloronaphthalene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Chlorophenol	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Chrysene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Dibenz(a,h)anthracene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Dibenzofuran	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Di-n-butylphthalate	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dichlorophenol	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Diethylphthalate	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dimethylphenol	ND	373	1490 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Dimethyl phthalate	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	934	3730 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dinitrophenol	ND	934	3730 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4-Dinitrotoluene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,6-Dinitrotoluene	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Di-n-octylphthalate	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	93.4	373 ug/Kg	g dry 1	5F12003	06/15/15	06/16/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert **Reported:** 06/29/2015 10:43

SS-03-0-1 1506109-03 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	Laboratories, L	LC					
Semivolatile Organic Compounds by GC/MS		.	,						
Fluoranthene	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Fluorene	ND	93.4	373 ug/Kg d		5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorobenzene	ND	93.4	373 ug/Kg d	-	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorobutadiene	ND	93.4	373 ug/Kg d	-	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorocyclopentadiene	ND	93.4	373 ug/Kg d	•	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachloroethane	ND	93.4	373 ug/Kg d	-	5F12003	06/15/15	06/16/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	93.4	373 ug/Kg d	-	5F12003	06/15/15	06/16/15	SW8270D	U
Isophorone	ND	93.4	373 ug/Kg d	•	5F12003	06/15/15	06/16/15	SW8270D	U
2-Methylnaphthalene	ND	93.4	373 ug/Kg d	-	5F12003	06/15/15	06/16/15	SW8270D	U
2-Methylphenol	ND	93.4	373 ug/Kg d		5F12003	06/15/15	06/16/15	SW8270D	U
4-Methylphenol	ND	93.4	373 ug/Kg d	•	5F12003	06/15/15	06/16/15	SW8270D	U
Naphthalene	ND	93.4	373 ug/Kg d		5F12003	06/15/15	06/16/15	SW8270D	U
4-Nitroaniline	ND	373	1490 ug/Kg d		5F12003	06/15/15	06/16/15	SW8270D	U
3-Nitroaniline	ND	373	1490 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Nitroaniline	ND	373	1490 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Nitrobenzene	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Nitrophenol	ND	373	1490 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Nitrophenol	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
N-Nitrosodiphenylamine	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Pentachlorophenol	ND	373	1490 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenanthrene	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenol	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Pyrene	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,6-Trichlorophenol	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,5-Trichlorophenol	ND	93.4	373 ug/Kg d	ry 1	5F12003	06/15/15	06/16/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		70.7 %	45-10:	5	5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2-Fluorophenol		63.1 %	35-10.	5	5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Nitrobenzene-d5		64.6 %	35-100)	5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Phenol-d6		64.9 %	40-100)	5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Terphenyl-d14		69.5 %	30-12	5	5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		89.3 %	35-12:	5	5F12003	06/15/15	06/16/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 14 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-03-4-5 1506109-04 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reportir Lim	_	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborat	ories, LL	C					
Classical Chemistry Parameters										
% Solids	86	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.07	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	0.986	0.643	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	0.227	0.214	1.07	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.214	1.07	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	11.2	0.429	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	2.10	0.857	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	6.74	0.321	1.07	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.96	0.643	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.643	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.214	2.14	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Γhallium	ND	0.643	1.71	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	9.95	1.07	4.29	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0133	0.0337	mg/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Volatile Organic Compounds by GC/MS										
Acetone	8.44	4.50	18.0	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromodichloromethane	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromoform	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromomethane	ND	2.25	9.00	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
2-Butanone	ND	2.25	9.00	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon disulfide	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	2.25	9.00	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloroform	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	2.25		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	1.12		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	1.12	4.50	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
,2-Dibromo-3-chloropropane	ND	2.25		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
,2-Dibromoethane (EDB)	ND	1.12		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dichlorobenzene	ND	1.12		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,3-Dichlorobenzene	ND	1.12		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,4-Dichlorobenzene	ND	1.12		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Dichlorodifluoromethane	ND	2.25		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Dichiorogrifuoromemane										

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

EA Engineering, Science, and Technology, Inc. 225 Schilling Circle, Suite 400

Hunt Valley MD, 21031

Project Number: EAE_Tyson
Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-03-4-5 1506109-04 (Solid)

			Reporting						
Analyte	Result	MDL	Limit U	Units Dilution	Batch	Prepared	Analyzed	Method	Notes

Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratori	ies, LL	C					
Volatile Organic Compounds by GC/MS										
1,2-Dichloroethane	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.25	9.00 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	2.25	9.00 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	2.25	9.00 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
4-Methyl-2-pentanone	ND	2.25	9.00 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Styrene	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Toluene	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.12	4.50 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.25	9.00 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.25	9.00 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.12	4.50 ug	Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.25	9.00 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.12	4.50 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		89.4 %		85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		105 %		80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		107 %		75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		89.8 %		85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 16 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-03-4-5

Project Manager: Jim Hulbert

SS-03-4-5 1506109-04 (Solid)

Reporting

Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratories, LI	.C					
Semivolatile Organic Compounds by GC/MS	,								
Acenaphthene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Acenaphthylene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	J
Acetophenone	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Anthracene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Atrazine	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Benzaldehyde	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Benzo(a)anthracene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Benzo(a)pyrene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Benzo(b)fluoranthene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Benzo(g,h,i)perylene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Benzo(k)fluoranthene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
1,1-Biphenyl	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
4-Bromophenyl-phenylether	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Butylbenzylphthalate	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Caprolactam	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Carbazole	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
4-Chloro-3-methylphenol	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
4-Chloroaniline	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Bis(2-chloroethoxy)methane	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Bis(2-chloroethyl)ether	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,2'-Oxybis-1-chloropropane	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Chloronaphthalene	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Chlorophenol	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
4-Chlorophenyl phenyl ether	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
Chrysene	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
Dibenz(a,h)anthracene	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Dibenzofuran	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
Di-n-butylphthalate	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
3,3'-Dichlorobenzidine	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
2,4-Dichlorophenol	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Diethylphthalate	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
2,4-Dimethylphenol	ND	370	1480 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Dimethyl phthalate	ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Į
4,6-Dinitro-2-methylphenol	ND	925	3700 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	ι
2,4-Dinitrophenol	ND ND	925	3700 ug/Kg dr	,	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,4-Dinitrotoluene	ND ND	92.5	3700 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,6-Dinitrotoluene	ND ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Di-n-octylphthalate	ND ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ
Bis(2-ethylhexyl)phthalate	ND ND	92.5	370 ug/Kg dr		5F12003	06/15/15	06/16/15	SW8270D	Ţ

EMPIRICAL LABORATORIES, LLC Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-03-4-5 1506109-04 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories, LI	.C					
Semivolatile Organic Compounds by	GC/MS								
Fluoranthene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Fluorene	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorobenzene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorobutadiene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachlorocyclopentadiene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Hexachloroethane	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Isophorone	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Methylnaphthalene	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Methylphenol	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Methylphenol	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Naphthalene	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Nitroaniline	ND	370	1480 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
3-Nitroaniline	ND	370	1480 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Nitroaniline	ND	370	1480 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Nitrobenzene	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
4-Nitrophenol	ND	370	1480 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
2-Nitrophenol	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
N-Nitrosodiphenylamine	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	92.5	370 ug/Kg dry	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Pentachlorophenol	ND	370	1480 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenanthrene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenol	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Pyrene	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,6-Trichlorophenol	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,5-Trichlorophenol	ND	92.5	370 ug/Kg dr	y 1	5F12003	06/15/15	06/16/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		70.7 %	45-105		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2-Fluorophenol		67.0 %	35-105		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Nitrobenzene-d5		66.3 %	35-100		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Phenol-d6		68.9 %	40-100		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Terphenyl-d14		67.5 %	30-125		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		89.8 %	35-125		5F12003	06/15/15	06/16/15	SW8270D	λ

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 18 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-06-0-1 1506109-05 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit U	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes
	<u> </u>		l Laboratories				•			
Classical Chemistry Parameters		p	2 24001400110	, 220						
% Solids	90	1.0	1.0	6	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.04	2.08 mg/k	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	0.967	0.625	2.08 mg/k	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	0.238	0.208	1.04 mg/k	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.208	1.04 mg/K	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	1
Chromium	9.86	0.417	2.08 mg/K	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	3.14	0.834	2.08 mg/K	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	6.66	0.313	1.04 mg/K	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.03	0.625	2.08 mg/K	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.625	2.08 mg/K	g dry	1	5F16726	06/16/15	06/25/15	SW6010C	1
Silver	ND	0.208	2.08 mg/K		1	5F16726	06/16/15	06/25/15	SW6010C	1
Thallium	ND	0.625	1.67 mg/k		1	5F16726	06/16/15	06/25/15	SW6010C	1
Zinc	5.58	1.04	4.17 mg/k		1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0150	0.0381 mg/k	g dry	1	5F15934	06/15/15	06/17/15	SW7471B	1
Semivolatile Organic Compounds by	GC/MS									
Acenaphthene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Acenaphthylene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Acetophenone	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	-
Anthracene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	-
Atrazine	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Benzaldehyde	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Benzo(a)anthracene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Benzo(a)pyrene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Benzo(b)fluoranthene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Benzo(g,h,i)perylene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Benzo(k)fluoranthene	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
1,1-Biphenyl	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
4-Bromophenyl-phenylether	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
Butylbenzylphthalate	ND	87.8	351 ug/K		1	5F12003	06/15/15	06/16/15	SW8270D	1
Caprolactam	ND	87.8	351 ug/K		1	5F12003	06/15/15	06/16/15	SW8270D	1
Carbazole	ND	87.8	351 ug/K	g dry	1	5F12003	06/15/15	06/16/15	SW8270D	1
4-Chloro-3-methylphenol	ND	87.8	351 ug/K		1	5F12003	06/15/15	06/16/15	SW8270D	
		87.8	351 ug/K		1	5F12003	06/15/15	06/16/15	SW8270D	
4-Chloroaniline	ND	07.0								
	ND ND	87.8	351 ug/K		1	5F12003	06/15/15	06/16/15	SW8270D	1
4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether				g dry	1	5F12003 5F12003	06/15/15 06/15/15	06/16/15 06/16/15	SW8270D SW8270D	1

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-06-0-1 1506109-05 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratori	es, LL	C					
Semivolatile Organic Compounds by GC/	MS									
2-Chloronaphthalene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Chlorophenol	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
4-Chlorophenyl phenyl ether	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Chrysene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Dibenz(a,h)anthracene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Dibenzofuran	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	τ
Di-n-butylphthalate	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
3,3'-Dichlorobenzidine	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,4-Dichlorophenol	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	J
Diethylphthalate	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,4-Dimethylphenol	ND	351	1400 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Dimethyl phthalate	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
4,6-Dinitro-2-methylphenol	ND	878	3510 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,4-Dinitrophenol	ND	878	3510 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2,4-Dinitrotoluene	ND	87.8	351 ug/			5F12003	06/15/15	06/16/15	SW8270D	τ
2,6-Dinitrotoluene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Di-n-octylphthalate	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Bis(2-ethylhexyl)phthalate	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Fluoranthene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Fluorene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Hexachlorobenzene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Hexachlorobutadiene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Hexachlorocyclopentadiene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Hexachloroethane	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Indeno(1,2,3-cd)pyrene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Isophorone	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Methylnaphthalene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Methylphenol	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
1-Methylphenol	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
Naphthalene	ND	87.8	351 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
4-Nitroaniline	ND	351	1400 ug/			5F12003	06/15/15	06/16/15	SW8270D	Ţ
3-Nitroaniline	ND	351	1400 ug/	/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Nitroaniline	ND	351	1400 ug/			5F12003	06/15/15	06/16/15	SW8270D	Ţ
Nitrobenzene	ND	87.8	351 ug/			5F12003	06/15/15	06/16/15	SW8270D	τ
1-Nitrophenol	ND	351	1400 ug/			5F12003	06/15/15	06/16/15	SW8270D	Ţ
2-Nitrophenol	ND	87.8	351 ug/			5F12003	06/15/15	06/16/15	SW8270D	Ţ
N-Nitrosodiphenylamine	ND	87.8	351 ug/			5F12003	06/15/15	06/16/15	SW8270D	Ţ
N-Nitroso-di-n-propylamine	ND	87.8	351 ug/			5F12003	06/15/15	06/16/15	SW8270D	J
Pentachlorophenol	ND	351	1400 ug/			5F12003	06/15/15	06/16/15	SW8270D	Į

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Surrogate: 2,4,6-Tribromophenol

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-06-0-1 1506109-05 (Solid)

			Reportin	g						
Analyte	Result	MDL	Limi	t Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborato	ories, LL	C					
Semivolatile Organic Compounds by GC/MS										
Phenanthrene	ND	87.8	351	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Phenol	ND	87.8	351	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Pyrene	ND	87.8	351	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,6-Trichlorophenol	ND	87.8	351	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
2,4,5-Trichlorophenol	ND	87.8	351	ug/Kg dry	1	5F12003	06/15/15	06/16/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		76.3 %		45-105		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: 2-Fluorophenol		67.2 %		35-105		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Nitrobenzene-d5		67.6 %		35-100		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Phenol-d6		69.6 %		40-100		5F12003	06/15/15	06/16/15	SW8270D	
Surrogate: Terphenyl-d14		73.2 %		30-125		5F12003	06/15/15	06/16/15	SW8270D	

35-125

93.8 %

5F12003

06/15/15 06/16/15

SW8270D

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 21 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-06-4-5 1506109-06 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laboratori	ies, LL	С					
Classical Chemistry Parameters										
% Solids	79	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.26	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.98	0.755	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.252	1.26 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.252	1.26 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	12.8	0.503	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	2.36	1.01	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	5.23	0.378	1.26 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.20	0.755	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.755	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.252	2.52 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Γhallium	ND	0.755	2.01 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	3.80	1.26	5.03 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0155	0.0393 mg	g/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Semivolatile Organic Compounds by (GC/MS									
Acenaphthene	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Acenaphthylene	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Acetophenone	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Anthracene	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Atrazine	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzaldehyde	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(a)anthracene	ND	103	410 ug	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
							06/15/15	06/17/15	SW8270D	
Benzo(a)pyrene	ND	103	410 ug	/Kg dry	1	5F12003				
· /**	ND ND	103 103	410 ug 410 ug		1 1	5F12003 5F12003	06/15/15	06/17/15	SW8270D	
Benzo(b)fluoranthene			_	/Kg dry					SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND	103	410 ug 410 ug	/Kg dry /Kg dry	1	5F12003	06/15/15	06/17/15		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ND	103 103	410 ug	/Kg dry /Kg dry /Kg dry	1 1	5F12003 5F12003	06/15/15 06/15/15	06/17/15 06/17/15	SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene ,1-Biphenyl	ND ND ND	103 103 103	410 ug 410 ug 410 ug	/Kg dry /Kg dry /Kg dry /Kg dry	1 1 1	5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15	SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene ,1-Biphenyl l-Bromophenyl-phenylether	ND ND ND ND	103 103 103 103	410 ug 410 ug 410 ug 410 ug	/Kg dry /Kg dry /Kg dry /Kg dry /Kg dry	1 1 1 1	5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene ,1-Biphenyl I-Bromophenyl-phenylether Butylbenzylphthalate	ND ND ND ND	103 103 103 103 103	410 ug 410 ug 410 ug 410 ug 410 ug	/Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry	1 1 1 1 1	5F12003 5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl I-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam	ND ND ND ND ND	103 103 103 103 103 103	410 ug 410 ug 410 ug 410 ug 410 ug 410 ug	/Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry	1 1 1 1 1	5F12003 5F12003 5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole	ND ND ND ND ND ND	103 103 103 103 103 103 103	410 ug 410 ug 410 ug 410 ug 410 ug 410 ug 410 ug 410 ug	/Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry	1 1 1 1 1 1	5F12003 5F12003 5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Carpolactam Carbazole 4-Chloro-3-methylphenol	ND	103 103 103 103 103 103 103 103	410 ug	/Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry	1 1 1 1 1 1 1	5F12003 5F12003 5F12003 5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline	ND	103 103 103 103 103 103 103	410 ug	/Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry /Kg dry	1 1 1 1 1 1 1 1	5F12003 5F12003 5F12003 5F12003 5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ND N	103 103 103 103 103 103 103 103 103	410 ug	/Kg dry	1 1 1 1 1 1 1 1 1	5F12003 5F12003 5F12003 5F12003 5F12003 5F12003 5F12003 5F12003 5F12003	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15 06/17/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-06-4-5 1506109-06 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratories, LLC	C					
Semivolatile Organic Compounds by GC/MS									
2-Chloronaphthalene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	410	1640 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	1030	4100 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	1030	4100 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	410	1640 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	410	1640 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	410	1640 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	410	1640 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	103	410 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	410	1640 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Surrogate: 2,4,6-Tribromophenol

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-06-4-5 1506109-06 (Solid)

			Reportin	g						
Analyte	Result	MDL	Limi	it Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborato	ories, LL	C					
Semivolatile Organic Compounds by GC/MS										
Phenanthrene	ND	103	410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	103	410	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	103	410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	103	410	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	103	410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		79.9 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		73.3 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		73.4 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		76.3 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		75.4 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	

35-125

98.7 %

5F12003

06/15/15 06/17/15

SW8270D

X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 24 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-07-0-1 1506109-07 (Solid)

Analyte	Result	MDL	Reporting Limit Unit	Dilution	n Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laboratories, L	LC					
Classical Chemistry Parameters									
% Solids	82	1.0	1.0 %	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP									
Antimony	ND	1.13	2.27 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	2.18	0.681	2.27 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.227	1.13 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.227	1.13 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	5.74	0.454	2.27 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	4.11	0.907	2.27 mg/Kg	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	2.40	0.340	1.13 mg/Kg	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	2.03	0.681	2.27 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.681	2.27 mg/Kg (ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.227	2.27 mg/Kg (•	5F16726	06/16/15	06/25/15	SW6010C	
Гhallium	ND	0.681	1.81 mg/Kg o	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	10.1	1.13	4.54 mg/Kg		5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA									
Mercury	ND	0.0139	0.0353 mg/Kg o	ry 1	5F15934	06/15/15	06/17/15	SW7471B	
Volatile Organic Compounds by GC/MS									
Acetone	10.5	4.73	18.9 ug/Kg d	ry 1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.18	4.73 ug/Kg d	ry 1	5F15915	06/15/15	06/15/15	SW8260B	
Bromodichloromethane	ND	1.18	4.73 ug/Kg d	ry 1	5F15915	06/15/15	06/15/15	SW8260B	
Bromoform	ND	1.18	4.73 ug/Kg d	-	5F15915	06/15/15	06/15/15	SW8260B	
Bromomethane	ND	2.37	9.47 ug/Kg d	-	5F15915	06/15/15	06/15/15	SW8260B	
2-Butanone	ND	2.37	9.47 ug/Kg d	-	5F15915	06/15/15	06/15/15	SW8260B	
Carbon disulfide	1.27	1.18	4.73 ug/Kg d	-	5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.18	4.73 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	1.18	4.73 ug/Kg d	-	5F15915	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	2.37	9.47 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
Chloroform	ND	1.18	4.73 ug/Kg d	-	5F15915	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	2.37	9.47 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	1.18	4.73 ug/Kg d	•	5F15915	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	1.18	4.73 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromo-3-chloropropane	ND	2.37	9.47 ug/Kg d	,	5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromoethane (EDB)	ND	1.18	4.73 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dichlorobenzene	ND	1.18	4.73 ug/Kg c		5F15915	06/15/15	06/15/15	SW8260B	
1,3-Dichlorobenzene	ND	1.18	4.73 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
1,4-Dichlorobenzene	ND	1.18	4.73 ug/Kg d		5F15915	06/15/15	06/15/15	SW8260B	
Dichlorodifluoromethane	ND ND	2.37	9.47 ug/Kg c		5F15915	06/15/15	06/15/15	SW8260B	
Jiemoroumuoromemane	ND	2.31	9.4/ ug/kg (ıy ı	21 13/13	00,10,10	00/13/13	5 11 0200D	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Report Date: 06/29/2015

Page 25 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-07-0-1 1506109-07 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical L	aborato	ries, LL	C					
Volatile Organic Compounds by GC/MS										
1,2-Dichloroethane	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,1-Dichloroethene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
cis-1,2-Dichloroethene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
trans-1,2-Dichloroethene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,2-Dichloropropane	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
cis-1,3-Dichloropropene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
trans-1,3-Dichloropropene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Ethylbenzene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
2-Hexanone	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Isopropylbenzene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Methylene chloride	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Methyl Acetate	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Methylcyclohexane	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
4-Methyl-2-pentanone	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Methyl t-Butyl Ether	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Styrene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,1,2,2-Tetrachloroethane	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Tetrachloroethene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Toluene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,2,4-Trichlorobenzene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,1,2-Trichloroethane	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,1,1-Trichloroethane	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Trichloroethene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Trichlorofluoromethane	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Vinyl chloride	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
m,p-Xylene	ND	2.37	9.47 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
o-Xylene	ND	1.18	4.73 u	ıg/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	1
Surrogate: Bromofluorobenzene		91.7 %		85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		106 %		80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		102 %		75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		87.7 %		85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 26 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-07-0-1 1506109-07 (Solid)

Reporting

Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratories, LL	·C		· · · · · · · · · · · · · · · · · · ·	-		
Semivolatile Organic Compounds by GC/N	MS	Empirical	Laboratories, EL						
Acenaphthene	ND	96.5	386 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Acenaphthylene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Acetophenone	ND	96.5	386 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Anthracene	ND	96.5	386 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Atrazine	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Benzaldehyde	ND	96.5	386 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)anthracene	ND	96.5	386 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)pyrene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(b)fluoranthene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(g,h,i)perylene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(k)fluoranthene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
1,1-Biphenyl	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Bromophenyl-phenylether	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Butylbenzylphthalate	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Caprolactam	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Carbazole	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloro-3-methylphenol	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	386	1540 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	965	3860 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	965	3860 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	96.5	386 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-07-0-1 1506109-07 (Solid)

			Reporting	g						
Analyte	Result	MDL	Limi	it Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	aborato	ories, LL	C					
Semivolatile Organic Compounds by	GC/MS									
Fluoranthene	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	386	1540	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	386	1540	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	386	1540	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	386	1540	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	96.5	386	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	386	1540	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	96.5		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	96.5		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	96.5	386	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		77.1 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		71.3 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		71.3 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		73.7 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		76.0 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		97.1 %		35-125		5F12003	06/15/15	06/17/15	SW8270D	Χ

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 28 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-07-4-5 1506109-08 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reportir Lim	_	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborat	ories, LL	C					
Classical Chemistry Parameters										
% Solids	83	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.17	2.35	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	0.917	0.704	2.35	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	0.310	0.235	1.17	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.235	1.17	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	17.5	0.469	2.35	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	3.17	0.938	2.35	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	6.64	0.352	1.17	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.05	0.704	2.35	mg/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.704	2.35	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.235		mg/Kg dry		5F16726	06/16/15	06/25/15	SW6010C	
Thallium	ND	0.704	1.88	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	7.28	1.17		mg/Kg dry		5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0143	0.0362	mg/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Volatile Organic Compounds by GC/MS										
Acetone	ND	4.34	17.4	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromodichloromethane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromoform	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromomethane	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
2-Butanone	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon disulfide	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloroform	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	2.17		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromo-3-chloropropane	ND	2.17		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromoethane (EDB)	ND	1.08		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dichlorobenzene	ND	1.08		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,3-Dichlorobenzene	ND	1.08		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
1,4-Dichlorobenzene	ND	1.08		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Dichlorodifluoromethane	ND	2.17		ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
	-			J J						

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

EA Engineering, Science, and Technology, Inc. 225 Schilling Circle, Suite 400 Project: Tyson Chicken
Project Number: EAE_Tyson
Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Hunt Valley MD, 21031

SS-07-4-5 1506109-08 (Solid)

			Reporting	g						
Analyte	Result	MDL	Limi	it Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical L	aborato	ories, LL	C					
Volatile Organic Compounds by GC/MS										
1,2-Dichloroethane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
1,1-Dichloroethene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	ι
cis-1,2-Dichloroethene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	ι
trans-1,2-Dichloroethene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	ι
1,2-Dichloropropane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
cis-1,3-Dichloropropene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	ι
trans-1,3-Dichloropropene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Ethylbenzene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
2-Hexanone	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Isopropylbenzene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Methylene chloride	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Methyl Acetate	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Methylcyclohexane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
4-Methyl-2-pentanone	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Methyl t-Butyl Ether	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Styrene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
1,1,2,2-Tetrachloroethane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Tetrachloroethene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Toluene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
1,2,4-Trichlorobenzene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
1,1,2-Trichloroethane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
1,1,1-Trichloroethane	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Trichloroethene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Trichlorofluoromethane	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Vinyl chloride	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
m,p-Xylene	ND	2.17	8.68	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
o-Xylene	ND	1.08	4.34	ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Surrogate: Bromofluorobenzene		92.6 %		85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		108 %		80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		105 %		75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		87.0 %		85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 30 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert 06/29/2015 10:43

Reported:

SS-07-4-5 1506109-08 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	Laboratories, LL	C					
Semivolatile Organic Compounds by GC/MS									
Acenaphthene	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Acenaphthylene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Acetophenone	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Anthracene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Atrazine	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzaldehyde	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)anthracene	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)pyrene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(b)fluoranthene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(g,h,i)perylene	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(k)fluoranthene	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
1,1-Biphenyl	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Bromophenyl-phenylether	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Butylbenzylphthalate	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Caprolactam	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Carbazole	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloro-3-methylphenol	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	388	1550 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	969	3880 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	969	3880 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	96.9	388 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	96.9	388 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Project: Tyson Chicken 225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-07-4-5 1506109-08 (Solid)

			Reporting							
Analyte	Result	MDL	Limit Un	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories,	LLC	!					
Semivolatile Organic Compounds by GC/MS		•	,							
Fluoranthene	ND	96.9	388 ug/Kg	drv	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	96.9	388 ug/Kg		1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	96.9	388 ug/Kg		1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	96.9	388 ug/Kg	-	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	96.9	388 ug/Kg		1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	96.9	388 ug/Kg	-	1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	96.9	388 ug/Kg		1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	388	1550 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	388	1550 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	388	1550 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	388	1550 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	388	1550 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	96.9	388 ug/Kg	dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		70.4 %	45-1	105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		66.3 %	35-1	105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		65.4 %	35-1	100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		69.2 %	40-1	100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		66.0 %	30-1	125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		85.4 %	35-1	125		5F12003	06/15/15	06/17/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 32 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-08-0-1 1506109-09 (Solid)

Project Manager: Jim Hulbert

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical	l Laboratoi	ries, LL	C					
Classical Chemistry Parameters										
% Solids	80	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.14	2.28 m	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.02	0.685	2.28 m	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.228	1.14 m	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.228	1.14 m	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	4.20	0.457	2.28 m	ng/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	2.11	0.914	2.28 m	ng/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	2.81	0.343	1.14 m	ng/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	2.25	0.685	2.28 m	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.685	2.28 m	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	1
Silver	ND	0.228	2.28 m	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	1
Thallium	ND	0.685	1.83 m	ng/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	1
Zinc	11.2	1.14	4.57 m	ng/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0157	0.0398 m	ng/Kg dry	, 1	5F15934	06/15/15	06/17/15	SW7471B	
Diesel Range Organics by GC										
Diesel Range Organics (C10-C28)	14.4	8.08	16.0 m	ng/Kg dry	1	5F16703	06/16/15	06/22/15	SW8015C DRO	
Surrogate: o-Terphenyl		84.4 %	6	35-140		5F16703	06/16/15	06/22/15	SW8015C DRO	
Semivolatile Organic Compounds by GC/	/MS									
Acenaphthene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Acenaphthylene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Acetophenone	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Anthracene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Atrazine	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzaldehyde	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)anthracene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(a)pyrene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(b)fluoranthene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(g,h,i)perylene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(k)fluoranthene	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
1,1-Biphenyl	ND	101	402 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
4-Bromophenyl-phenylether	ND	101		g/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
Butylbenzylphthalate	ND	101		g/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
	ND	101		g/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	1
Caprolactam	110	101	702 u	g/IXg ui y						

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert **Reported:** 06/29/2015 10:43

SS-08-0-1 1506109-09 (Solid)

Reporting

			Reporting						
Analyte	Result	MDL	Limit Uni	ts Dilutio	on Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratories,	LLC					
Semivolatile Organic Compounds by	GC/MS								
4-Chloro-3-methylphenol	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	402	1610 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	101	402 ug/Kg	dry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	1010	4020 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	1010	4020 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	101	402 ug/Kg		5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	101	402 ug/Kg	•	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	101	402 ug/Kg		5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	101	402 ug/Kg		5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	101	402 ug/Kg		5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	402	1610 ug/Kg		5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	402	1610 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	402	1610 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	101	402 ug/Kg	-	5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Surrogate: 2,4,6-Tribromophenol

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-08-0-1 1506109-09 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories, LI	.C					
Semivolatile Organic Compounds by GC/MS									
4-Nitrophenol	ND	402	1610 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	101	402 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	101	402 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	101	402 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	402	1610 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	101	402 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	101	402 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	101	402 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	101	402 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	101	402 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		71.4 %	45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		63.2 %	35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		64.8 %	35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		65.8 %	40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		69.8 %	30-125		5F12003	06/15/15	06/17/15	SW8270D	

86.8 %

5F12003

06/15/15 06/17/15

SW8270D

X

35-125

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 35 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-08-4-5 1506109-10 (Solid)

Analist	D 1	MDI	Reporti	-	Dil	D / 1	Dans 1	A1 1	M-41- 1	3.7 -
Analyte	Result	MDL	Lin	nit Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical	Labora	tories, LL	C					
Classical Chemistry Parameters										
% Solids	84	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.16	2.32	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	0.838	0.696	2.32	mg/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.232	1.16	mg/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.232	1.16	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	4.55	0.464	2.32	mg/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	4.10	0.928	2.32	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	3.75	0.348	1.16	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	2.04	0.696	2.32	mg/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.696	2.32	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.232	2.32	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Гhallium	ND	0.696	1.86	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Linc	444	1.16	4.64	mg/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0150	0.0381	mg/Kg dry	, 1	5F15934	06/15/15	06/17/15	SW7471B	
Discal Dange Ouganies by CC										
Diesel Range Organics by GC Diesel Range Organics (C10-C28)	34.2	7.60	15.1	mg/Kg dry	, 1	5F16703	06/16/15	06/22/15	SW8015C	
Dieser Range Organies (C10-C20)	34.2	7.00	13.1	mg/Kg dry		21 10,03	00/10/15	00,22,10	DRO	
Surrogate: o-Terphenyl		87.2 %	ó	35-140		5F16703	06/16/15	06/22/15	SW8015C	
									DRO	
Semivolatile Organic Compounds by G										
Acenaphthene	ND	95.7		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
Acenaphthylene	ND	95.7		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
Acetophenone	ND	95.7		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
Anthracene	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Atrazine	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzaldehyde	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(a)anthracene	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(a)pyrene	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(b)fluoranthene	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(g,h,i)perylene	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
Benzo(k)fluoranthene	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
1,1-Biphenyl	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
4-Bromophenyl-phenylether	1.2									
	ND	95.7	383	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	
4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam				ug/Kg dry		5F12003 5F12003	06/15/15 06/15/15	06/17/15 06/17/15	SW8270D SW8270D	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-08-4-5 1506109-10 (Solid)

Analyte	Result	MDL	Reporting Limit Units	Dilution	n Batch	Prepared	Analyzed	Method	Notes
		Empirica	Laboratories, LL	ıC					
Semivolatile Organic Compounds by GC/M	1S								
4-Chloro-3-methylphenol	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	383	1530 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	957	3830 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	957	3830 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	95.7	383 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	383	1530 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	383	1530 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	383	1530 ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	95.7	383 ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-08-4-5 1506109-10 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	aboratoi	ies, LL	C					
Semivolatile Organic Compounds by G	C/MS									
4-Nitrophenol	ND	383	1530 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	383	1530 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	95.7	383 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		78.9 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		43.5 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		70.6 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		68.8 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		78.5 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		30.9 %		35-125		5F12003	06/15/15	06/17/15	SW8270D	*X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 38 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-10-0-1 1506109-11 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit Units	Dilution	n Batch	Prepared	Analyzed	Method	Note
7 mary to	Result	MIDL	Lillit Ollits	Dilution	1 Dateil	терагец	Anaryzed	Memou	INOIC
		Empirica	l Laboratories, L	LC					
Classical Chemistry Parameters									
% Solids	93	1.0	1.0 %	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP									
Antimony	ND	1.06	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.80	0.637	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	0.237	0.212	1.06 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.212	1.06 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	6.28	0.425	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	3.15	0.850	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	6.60	0.319	1.06 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.51	0.637	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.637	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Silver	ND	0.212	2.12 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Thallium	ND	0.637	1.70 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	11.1	1.06	4.25 mg/Kg d	ry 1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA									
Mercury	0.0239	0.0131	0.0332 mg/Kg d	ry 1	5F15934	06/15/15	06/17/15	SW7471B	
•									
Volatile Organic Compounds by GC/MS Acetone	22.5	4.24	17.0 ug/Kg di	v 1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.06	4.24 ug/Kg di	,	5F15915	06/15/15	06/15/15	SW8260B	
Bromodichloromethane	ND	1.06	4.24 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
Bromoform	ND	1.06	4.24 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
Bromomethane	ND	2.12	8.49 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
2-Butanone	2.66	2.12	8.49 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
Carbon disulfide	3.98	1.06	4.24 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.06	4.24 ug/Kg di		5F15915	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	1.06	4.24 ug/Kg di		5F15915	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	2.12	8.49 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
Chloroform	ND	1.06	4.24 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	2.12	8.49 ug/Kg di		5F15915	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	1.06	4.24 ug/Kg di		5F15915	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	1.06	4.24 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromo-3-chloropropane	ND	2.12	8.49 ug/Kg di	-	5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromoethane (EDB)	ND ND	1.06	4.24 ug/Kg di		5F15915	06/15/15	06/15/15	SW8260B	
		1.06	4.24 ug/Kg di 4.24 ug/Kg di	,	5F15915	06/15/15	06/15/15	SW8260B	
, , ,		1.00	T.2T ug/Kg u	y i					
1,2-Dichlorobenzene	ND ND		121 ng/Kad	₃₇ 1	5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND	1.06	4.24 ug/Kg da	-	5F15915 5F15915	06/15/15	06/15/15	SW8260B SW8260B	
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane			4.24 ug/Kg dı 4.24 ug/Kg dı 8.49 ug/Kg dı	y 1	5F15915 5F15915 5F15915	06/15/15 06/15/15 06/15/15	06/15/15 06/15/15 06/15/15	SW8260B SW8260B SW8260B	1

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-10-0-1 1506109-11 (Solid)

Project: Tyson Chicken

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	Laboratories, LL	C					
Volatile Organic Compounds by GC/MS		r	,						
1.2-Dichloroethane	ND	1.06	4.24 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1.1-Dichloroethene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.12	8.49 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	1.06	4.24 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	2.12	8.49 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	2.12	8.49 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	2.42	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	J
4-Methyl-2-pentanone	ND	2.12	8.49 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Styrene	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Toluene	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.12	8.49 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.12	8.49 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.06	4.24 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.12	8.49 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.06	4.24 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		89.1 %	85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		110 %	80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		101 %	75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		86.1 %	85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 40 of 109

225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-10-0-1 1506109-11 (Solid)

Reporting

Project: Tyson Chicken

Analyte	Result	MDL	Lin	nit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborat	tories, LL	C					
Diesel Range Organics by GC										
Diesel Range Organics (C10-C28)	44.9	7.03	14.0	mg/Kg dry	y 1	5F16703	06/16/15	06/22/15	SW8015C DRO	
Surrogate: o-Terphenyl		95.9 %		35-140		5F16703	06/16/15	06/22/15	SW8015C DRO	
Semivolatile Organic Compounds by GC	/MS									
Acenaphthene	ND	87.2	348	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Acenaphthylene	ND	87.2	348	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Acetophenone	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Anthracene	92.0	87.2	348	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	J
Atrazine	ND	87.2	348	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzaldehyde	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)anthracene	248	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	J
Benzo(a)pyrene	244	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	J
Benzo(b)fluoranthene	206	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	J
Benzo(g,h,i)perylene	165	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	J
Benzo(k)fluoranthene	203	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	J
1,1-Biphenyl	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Bromophenyl-phenylether	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Butylbenzylphthalate	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Caprolactam	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Carbazole	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloro-3-methylphenol	ND	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	238	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	J
Dibenz(a,h)anthracene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	348		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 41 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-10-0-1 1506109-11 (Solid)

Project Manager: Jim Hulbert

			Reportin	ıg						
Analyte	Result	MDL	Lim	it Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborat	ories. L.L.	C					
Semivolatile Organic Compounds by GC/MS		2mpiricui 2	and or ac	511cs, EE						
2,4-Dinitrophenol	ND	872	3480	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	452	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
Fluorene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	187	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	J
Isophorone	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	348		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	348		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	348		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	348		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	348		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	339	87.2	348	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	J
Phenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	396	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	
2,4,6-Trichlorophenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	87.2		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		60.4 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		53.4 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		53.2 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		55.6 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		60.6 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 42 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-10-4-5 1506109-12 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit Uni	s Dilution	n Batch	Prepared	Analyzed	Method	Notes
y	resurt				. Duten	Topulou	, 200		110101
		Empirica	l Laboratories, l	LLC					
Classical Chemistry Parameters % Solids	83	1.0	1.0 %	1	5F15928	06/15/15	06/16/15	SM2540B	
70 Sullus	65	1.0	1.0 /0		31 13720	00/15/15	00/10/13	SM2340B	
Metals (Total) by ICP									
Antimony	ND	1.14	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	NU
Arsenic	2.05	0.682	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	0.340	0.227	1.14 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.227	1.14 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	τ
Chromium	9.69	0.455	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	3.21	0.910	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	4.52	0.341	1.14 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	4.56	0.682	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.682	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	Ţ
Silver	ND	0.227	2.27 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	Ţ
Thallium	ND	0.682	1.82 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	Ţ
Zinc	8.31	1.14	4.55 mg/Kg	dry 1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA									
Mercury	ND	0.0147	0.0373 mg/Kg	dry 1	5F15935	06/15/15	06/17/15	SW7471B	τ
Volatile Organic Compounds by GC/MS									
Acetone	25.1	4.45	17.8 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	1
Benzene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Bromodichloromethane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Bromoform	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Bromomethane	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
2-Butanone	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Carbon disulfide	1.30	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Chlorobenzene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Chloroethane	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Chloroform	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Chloromethane	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Cyclohexane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Dibromochloromethane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
1,2-Dibromo-3-chloropropane	ND	2.23	8.90 ug/Kg	-	5F15915	06/15/15	06/15/15	SW8260B	NU
1,2-Dibromoethane (EDB)	ND	1.11	4.45 ug/Kg	-	5F15915	06/15/15	06/15/15	SW8260B	NU
1,2-Dichlorobenzene	ND	1.11	4.45 ug/Kg	-	5F15915	06/15/15	06/15/15	SW8260B	NU
1,3-Dichlorobenzene	ND	1.11	4.45 ug/Kg		5F15915	06/15/15	06/15/15	SW8260B	N
1,4-Dichlorobenzene	ND	1.11	4.45 ug/Kg		5F15915	06/15/15	06/15/15	SW8260B	NU
Dichlorodifluoromethane	ND	2.23	8.90 ug/Kg	-	5F15915	06/15/15	06/15/15	SW8260B	ι
				_					

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

EA Engineering, Science, and Technology, Inc. 225 Schilling Circle, Suite 400

Hunt Valley MD, 21031

Project: Tyson Chicken Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-10-4-5 1506109-12 (Solid)

Volatile Organic Compounds by GC/MS 1,2-Dichloroethane 1,1-Dichloroethene	ND ND ND ND	MDL Empirical L 1.11 1.11	Limit Un aboratories, 4.45 ug/Kg		on Batch	Prepared	Analyzed	Method	Notes
1,2-Dichloroethane 1,1-Dichloroethene	ND	1.11		LLC					
1,2-Dichloroethane 1,1-Dichloroethene	ND		4 45 11g/Kg						
1,1-Dichloroethene	ND		4 45 11g/Kg						
<i>'</i>		1 11	49,118	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene		1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Ethylbenzene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
2-Hexanone	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Isopropylbenzene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Methylene chloride	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
4-Methyl-2-pentanone	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Methyl t-Butyl Ether	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
Styrene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
1,1,2,2-Tetrachloroethane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Tetrachloroethene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Toluene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
1,2,4-Trichlorobenzene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
1,1,2-Trichloroethane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
1,1,1-Trichloroethane	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Trichlorofluoromethane	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.23	8.90 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
o-Xylene	ND	1.11	4.45 ug/Kg	dry 1	5F15915	06/15/15	06/15/15	SW8260B	NU
Surrogate: Bromofluorobenzene		91.9 %	85-1	20	5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		103 %	80-1	25	5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		104 %	75-1	40	5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		86.9 %	85-1	15	5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 44 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert **Reported:** 06/29/2015 10:43

SS-10-4-5 1506109-12 (Solid)

Analyte	Result	MDL	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical I	Laboratories, LI	LC					
Diesel Range Organics by GC			,						
Diesel Range Organics (C10-C28)	13.8	7.79	15.5 mg/Kg di	y 1	5F16703	06/16/15	06/22/15	SW8015C DRO	
Surrogate: o-Terphenyl		78.1 %	35-140		5F16703	06/16/15	06/22/15	SW8015C DRO	
Semivolatile Organic Compounds by GC	C/MS								
Acenaphthene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Acenaphthylene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Acetophenone	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Anthracene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Atrazine	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzaldehyde	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)anthracene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)pyrene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(b)fluoranthene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(g,h,i)perylene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(k)fluoranthene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
1,1-Biphenyl	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Bromophenyl-phenylether	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	τ
Butylbenzylphthalate	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Caprolactam	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Carbazole	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Chloro-3-methylphenol	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Chloroaniline	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Bis(2-chloroethoxy)methane	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	τ
Bis(2-chloroethyl)ether	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2,2'-Oxybis-1-chloropropane	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	τ
2-Chloronaphthalene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2-Chlorophenol	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Chlorophenyl phenyl ether	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Chrysene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Dibenz(a,h)anthracene	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Dibenzofuran	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Di-n-butylphthalate	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
3,3'-Dichlorobenzidine	ND	98.8	395 ug/Kg dr		5F12003	06/15/15	06/17/15	SW8270D	1
2,4-Dichlorophenol	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Diethylphthalate	ND	98.8	395 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2,4-Dimethylphenol	ND	395	1580 ug/Kg dr		5F12003	06/15/15	06/17/15	SW8270D	τ
Dimethyl phthalate	ND	98.8	395 ug/Kg dr		5F12003	06/15/15	06/17/15	SW8270D	1
4,6-Dinitro-2-methylphenol	ND	988	3950 ug/Kg dr		5F12003	06/15/15	06/17/15	SW8270D	Ţ

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

EA Engineering, Science, and Technology, Inc.

Project: Tyson Chicken

225 Schilling Circle, Suite 400

Project Number: EAE Tycon

225 Schilling Circle, Suite 400Project Number: EAE_TysonReported:Hunt Valley MD, 21031Project Manager: Jim Hulbert06/29/2015 10:43

SS-10-4-5 1506109-12 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	aboratories, LLC	7					
Semivolatile Organic Compounds by GC/MS		F	,						
2,4-Dinitrophenol	ND	988	3950 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	395	1580 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	395	1580 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	395	1580 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	395	1580 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	395	1580 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	98.8	395 ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		69.1 %	45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		63.2 %	35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		62.8 %	35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		64.8 %	40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		68.1 %	30-125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		84.2 %	35-125		5F12003	06/15/15	06/17/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 46 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-10-4-5 1506109-12RE1 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result				Daten	Trepared	Allaryzeu	Witthou	TVOICS
		Empirical	Laboratories, L	LC					
Volatile Organic Compounds by GC/MS		4.45	17.0 %	1	5F17002	06/15/15	06/15/15		N.
Acetone	25.1	4.45	17.8 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NO
Benzene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	J
Bromodichloromethane	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	NU
Bromoform	ND	1.11	4.45 ug/Kg d	•	5F17003	06/15/15	06/15/15	SW8260B	NU
Bromomethane	ND	2.23	8.90 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	UZ
2-Butanone	ND	2.23	8.90 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
Carbon disulfide	1.30	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	J
Chlorobenzene	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	U
Chloroethane	ND	2.23	8.90 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	U
Chloroform	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	Į.
Chloromethane	ND	2.23	8.90 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	Ţ
Cyclohexane	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	J
Dibromochloromethane	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	NU
1,2-Dibromo-3-chloropropane	ND	2.23	8.90 ug/Kg d	•	5F17003	06/15/15	06/15/15	SW8260B	NU
1,2-Dibromoethane (EDB)	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	NU
1,2-Dichlorobenzene	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	Ţ
1,3-Dichlorobenzene	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	J
1,4-Dichlorobenzene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	Ţ
Dichlorodifluoromethane	ND	2.23	8.90 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	Ţ
1,1-Dichloroethane	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	J
1,2-Dichloroethane	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	NU
1,1-Dichloroethene	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	Ţ
cis-1,2-Dichloroethene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	J
trans-1,2-Dichloroethene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	J
1,2-Dichloropropane	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
cis-1,3-Dichloropropene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
trans-1,3-Dichloropropene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
Ethylbenzene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	J
2-Hexanone	ND	2.23	8.90 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	NU
Isopropylbenzene	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
Methylene chloride	ND	2.23	8.90 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	J
Methyl Acetate	ND	2.23	8.90 ug/Kg d	•	5F17003	06/15/15	06/15/15	SW8260B	J NI
Methylcyclohexane	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	NU
4-Methyl-2-pentanone	ND	2.23	8.90 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
Methyl t-Butyl Ether	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NU
Styrene	ND	1.11	4.45 ug/Kg d	-	5F17003	06/15/15	06/15/15	SW8260B	J
1,1,2,2-Tetrachloroethane	ND	1.11	4.45 ug/Kg d		5F17003	06/15/15	06/15/15	SW8260B	NUX
Tetrachloroethene	ND	1.11	4.45 ug/Kg d	ry 1	5F17003	06/15/15	06/15/15	SW8260B	NU

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 47 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

SS-10-4-5 1506109-12RE1 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratorie	es, LL	C					
Volatile Organic Compounds by GC/MS										
Toluene	ND	1.11	4.45 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.11	4.45 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	NU
1,1,2-Trichloroethane	ND	1.11	4.45 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	NU
1,1,1-Trichloroethane	ND	1.11	4.45 ug/l	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.11	4.45 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.23	8.90 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.23	8.90 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.11	4.45 ug/l	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.23	8.90 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.11	4.45 ug/	Kg dry	1	5F17003	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		91.9 %	8.	5-120		5F17003	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		103 %	8	0-125		5F17003	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		104 %	7.	5-140		5F17003	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		86.9 %	8	5-115		5F17003	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 48 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-09-0-1 1506109-13 (Solid)

Classical Chemistry Parameters 6 Solids Metals (Total) by ICP Antimony Arsenic	92 ND ND	1.0 1.05	al Laboratori	ries, LLO						
6 Solids Metals (Total) by ICP Antimony	ND		1.0	%						
Metals (Total) by ICP	ND		1.0	%						
ntimony		1.05			1	5F15928	06/15/15	06/16/15	SM2540B	
		1.05								
arsenic	ND	1.03	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
		0.627	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.209	1.05 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium Cadmium	ND	0.209	1.05 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	3.62	0.418	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	7.96	0.836	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
ead	3.99	0.314	1.05 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
lickel	39.3	0.627	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
elenium	ND	0.627	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
ilver	ND	0.209	2.09 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
hallium	ND	0.627	1.67 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
line	44.0	1.05	4.18 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
1 dercury	ND	0.0141	0.0359 mg	g/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Volatile Organic Compounds by GC/MS										
cetone	50.8	4.47	17.9 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.12	4.47 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
romodichloromethane	ND	1.12	4.47 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromoform	ND	1.12	4.47 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
romomethane	ND	2.23	8.94 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
-Butanone	9.72	2.23	8.94 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon disulfide	ND	1.12	4.47 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.12	4.47 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	1.12	4.47 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	2.23	8.94 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
Chloroform	ND	1.12	•	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	2.23	8.94 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	1.12	4.47 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	1.12		g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
,2-Dibromo-3-chloropropane	ND	2.23	8.94 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
,2-Dibromoethane (EDB)	ND	1.12	4.47 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
,2-Dichlorobenzene	ND	1.12		g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
,3-Dichlorobenzene	ND	1.12	4.47 ug		1	5F15915	06/15/15	06/15/15	SW8260B	
,4-Dichlorobenzene	ND	1.12		g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Dichlorodifluoromethane	ND ND	2.23		g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
,1-Dichloroethane	ND ND	1.12	_	g/Kg dry g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Project: Tyson Chicken 225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-09-0-1 1506109-13 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Emnirical I	aboratories, LL	C					
VI COME		Zinpiricai I	and atomes, EL	C					
Volatile Organic Compounds by GC/MS 1.2-Dichloroethane	ND	1.12	4.47 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND ND	1.12			5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND ND	1.12	4.47 ug/Kg dry 4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
,	ND ND	1.12	4.47 ug/Kg dry 4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND ND				5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B SW8260B	U
2-Hexanone		2.23	8.94 ug/Kg dry		5F15915		06/15/15	SW8260B SW8260B	U
Isopropylbenzene	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15 06/15/15	06/15/15	SW8260B SW8260B	U
Methylene chloride	ND	2.23	8.94 ug/Kg dry						U
Methyl Acetate	ND	2.23	8.94 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
4-Methyl-2-pentanone	ND	2.23	8.94 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U U
Methyl t-Butyl Ether	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Styrene	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Toluene	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.12	4.47 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.23	8.94 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.23	8.94 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.12	4.47 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.23	8.94 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.12	4.47 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		88.4 %	85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		111 %	80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		102 %	75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		89.9 %	85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 50 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-09-0-1 1506109-13 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Note
			Laboratories, LI			*****			
Diesel Range Organics by GC		Empiricari	Laboratories, Li	ı.C					
Diesel Range Organics (C10-C28)	72.7	7.13	14.2 mg/Kg dr	y 1	5F16703	06/16/15	06/22/15	SW8015C DRO	
Surrogate: o-Terphenyl		83.0 %	35-140		5F16703	06/16/15	06/22/15	SW8015C DRO	
Semivolatile Organic Compounds by G	C/MS								
Acenaphthene	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Acenaphthylene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Acetophenone	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Anthracene	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Atrazine	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzaldehyde	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)anthracene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)pyrene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(b)fluoranthene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(g,h,i)perylene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(k)fluoranthene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
1,1-Biphenyl	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Bromophenyl-phenylether	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Butylbenzylphthalate	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Caprolactam	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Carbazole	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Chloro-3-methylphenol	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Chloroaniline	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Bis(2-chloroethoxy)methane	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Bis(2-chloroethyl)ether	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2,2'-Oxybis-1-chloropropane	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2-Chloronaphthalene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2-Chlorophenol	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Chlorophenyl phenyl ether	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Chrysene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Dibenz(a,h)anthracene	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Dibenzofuran	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Di-n-butylphthalate	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
3,3'-Dichlorobenzidine	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2,4-Dichlorophenol	ND	88.1	352 ug/Kg dry	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Diethylphthalate	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
2,4-Dimethylphenol	ND	352	1410 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
Dimethyl phthalate	ND	88.1	352 ug/Kg dr	y 1	5F12003	06/15/15	06/17/15	SW8270D	1
4,6-Dinitro-2-methylphenol	ND	881	3520 ug/Kg dr		5F12003	06/15/15	06/17/15	SW8270D	1

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-09-0-1 1506109-13 (Solid)

Project Manager: Jim Hulbert

			Reportir	ng						
Analyte	Result	MDL	Lim	it Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	_aborat	ories, LL	C					
Semivolatile Organic Compounds by GC	C/MS									
2,4-Dinitrophenol	ND	881	3520	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	352	1410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	352	1410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	352	1410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	352	1410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	352	1410	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	88.1	352	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		74.8 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		67.8 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		69.1 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		71.0 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		71.0 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		94.5 %		35-125		5F12003	06/15/15	06/17/15	SW8270D	X

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

SS-09-4-5 1506109-14 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laborator	ies, LL	C					
Classical Chemistry Parameters										
% Solids	87	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.11	2.22 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.66	0.666	2.22 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.222	1.11 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	1
Cadmium	ND	0.222	1.11 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	1
Chromium	5.08	0.444	2.22 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	1.35	0.888	2.22 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	10.1	0.333	1.11 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	1.77	0.666	2.22 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.666	2.22 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	Ţ
Silver	ND	0.222	2.22 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	Ţ
Гhallium	ND	0.666	1.78 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	Ţ
Zinc	7.13	1.11	4.44 m	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	0.0201	0.0150	0.0381 m	g/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Volatile Organic Compounds by GC/MS										
Acetone	14.4	4.10	16.4 սչ	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.02	4.10 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Bromodichloromethane	ND	1.02	4.10 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Bromoform	ND	1.02	4.10 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	τ
Bromomethane	ND	2.05	8.20 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
2-Butanone	ND	2.05	8.20 ug	g/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	Ţ
Carbon disulfide	2.43	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	Ţ
Chlorobenzene	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	Ţ
Chloroethane	ND	2.05	•	g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	Ţ
Chloroform	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	τ
Chloromethane	ND	2.05		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	τ
Cyclohexane	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	τ
Dibromochloromethane	ND	1.02	•	g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1
1,2-Dibromo-3-chloropropane	ND	2.05		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1
1.2-Dibromoethane (EDB)	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1
1,2-Dichlorobenzene	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1
1,3-Dichlorobenzene	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1
1,4-Dichlorobenzene	ND	1.02		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1
Dichlorodifluoromethane	ND	2.05		g/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	1

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

EA Engineering, Science, and Technology, Inc. 225 Schilling Circle, Suite 400

Hunt Valley MD, 21031

Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

SS-09-4-5 1506109-14 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	Laboratories, LL	ıC					
Volatile Organic Compounds by GC/MS									
1,2-Dichloroethane	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.05	8.20 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	2.05	8.20 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	2.05	8.20 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
4-Methyl-2-pentanone	ND	2.05	8.20 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Styrene	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Toluene	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.05	8.20 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.05	8.20 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.02	4.10 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.05	8.20 ug/Kg dry	, 1	5F15915	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.02	4.10 ug/Kg dry	/ 1	5F15915	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		89.7 %	85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		108 %	80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		101 %	75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		89.3 %	85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 54 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 6/29/2015 10:43

Hunt Valley MD, 21031

Project Manager: Jim Hulbert 06/29/2015 10:43

SS-09-4-5 1506109-14 (Solid)

Reporting

Analyte	Result	MDL	Lin	nit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborat	tories, LL	C					
Diesel Range Organics by GC										
Diesel Range Organics (C10-C28)	24.0	7.63	15.1	mg/Kg dry	1	5F16703	06/16/15	06/22/15	SW8015C DRO	
Surrogate: o-Terphenyl		81.3 %		35-140		5F16703	06/16/15	06/22/15	SW8015C DRO	
Semivolatile Organic Compounds by GC/	MS									
Acenaphthene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Acenaphthylene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Acetophenone	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Anthracene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Atrazine	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzaldehyde	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)anthracene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)pyrene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(b)fluoranthene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(g,h,i)perylene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(k)fluoranthene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
1,1-Biphenyl	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Bromophenyl-phenylether	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Butylbenzylphthalate	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Caprolactam	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Carbazole	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloro-3-methylphenol	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	93.8		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	93.8		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	93.8		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND ND	375		ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND ND	93.8		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND ND	93.8		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 55 of 109

EA Engineering, Science, and Technology, Inc.

Project: Tyson Chicken

225 Schilling Circle, Suite 400

225 Schilling Circle, Suite 400Project Number: EAE_TysonReported:Hunt Valley MD, 21031Project Manager: Jim Hulbert06/29/2015 10:43

SS-09-4-5 1506109-14 (Solid)

			Reportin	ng						
Analyte	Result	MDL	Lim	nit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborat	ories, LL	C					
Semivolatile Organic Compounds by GC/MS										
2,4-Dinitrophenol	ND	938	3750	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	375	1500	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	375	1500	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	375	1500	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitrophenol	ND	375	1500	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	375	1500	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	93.8	375	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	93.8	375	ug/Kg dry	, 1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		74.3 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		68.4 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		67.9 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		69.5 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		70.8 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		91.5 %		35-125		5F12003	06/15/15	06/17/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 56 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

DUP-01 1506109-15 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laboratori	ies, LL	C					
Classical Chemistry Parameters										
% Solids	87	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.13	2.27 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.01	0.680	2.27 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.227	1.13 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Cadmium	ND	0.227	1.13 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Chromium	9.69	0.453	2.27 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	1.94	0.906	2.27 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	5.95	0.340	1.13 mg	g/Kg dry	1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	3.68	0.680	2.27 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.680	2.27 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	1
Silver	ND	0.227	2.27 mg			5F16726	06/16/15	06/25/15	SW6010C	1
Thallium	ND	0.680	1.81 mg	g/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Zinc	9.63	1.13	4.53 mg			5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	0.0176	0.0145	0.0369 mg	g/Kg dry	, 1	5F15934	06/15/15	06/17/15	SW7471B	
Volatile Organic Compounds by GC/MS										
Acetone	7.44	4.41	17.6 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Benzene	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
Bromodichloromethane	ND	1.10	4.41 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromoform	ND	1.10	4.41 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
Bromomethane	ND	2.21	8.82 ug	/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	
2-Butanone	ND	2.21	8.82 ug			5F15915	06/15/15	06/15/15	SW8260B	-
Carbon disulfide	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	-
Carbon tetrachloride	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	2.21	8.82 ug			5F15915	06/15/15	06/15/15	SW8260B	
Chloroform	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	2.21	8.82 ug			5F15915	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dibromo-3-chloropropane	ND	2.21	8.82 ug			5F15915	06/15/15	06/15/15	SW8260B	1
1,2-Dibromoethane (EDB)	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
1,2-Dichlorobenzene	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
1,3-Dichlorobenzene	ND	1.10	4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
1,4-Dichlorobenzene	ND ND	1.10	4.41 ug 4.41 ug			5F15915	06/15/15	06/15/15	SW8260B	
Dichlorodifluoromethane	ND ND	2.21	8.82 ug			5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

DUP-01 1506109-15 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Emnirical I	aboratories, LL	C					
VI.T.O C. III COMS		Zimpiricui I	and atomes, EL	C					
Volatile Organic Compounds by GC/MS 1.2-Dichloroethane	ND	1.10	4.41 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND ND	1.10			5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND ND	1.10	4.41 ug/Kg dry 4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
,	ND ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND ND				5F15915	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND ND	1.10 1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND ND		4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B SW8260B	U
2-Hexanone		2.21	8.82 ug/Kg dry		5F15915		06/15/15		U
Isopropylbenzene Mathelian ablanida	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15 06/15/15	06/15/15	SW8260B	J
Methylene chloride	2.30	2.21	8.82 ug/Kg dry					SW8260B	U
Methyl Acetate	ND	2.21	8.82 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
4-Methyl-2-pentanone	ND	2.21	8.82 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	
Methyl t-Butyl Ether	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Styrene	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Toluene	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	2.21	8.82 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.21	8.82 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	1.10	4.41 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	2.21	8.82 ug/Kg dry		5F15915	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	1.10	4.41 ug/Kg dry	1	5F15915	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		91.9 %	85-120		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		108 %	80-125		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		104 %	75-140		5F15915	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		88.5 %	85-115		5F15915	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 58 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

DUP-01 1506109-15 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laboratories, L	LC					
Semivolatile Organic Compounds by GC/MS		_							
Acenaphthene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Acenaphthylene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Acetophenone	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Anthracene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Atrazine	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzaldehyde	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)anthracene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(a)pyrene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(b)fluoranthene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(g,h,i)perylene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Benzo(k)fluoranthene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
1,1-Biphenyl	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Bromophenyl-phenylether	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Butylbenzylphthalate	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Caprolactam	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Carbazole	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloro-3-methylphenol	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	379	1510 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	949	3790 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	949	3790 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	94.9	379 ug/Kg d	ry 1	5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

DUP-01 1506109-15 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical I	aboratories, L	LC					
Semivolatile Organic Compounds by G	C/MS								
Fluoranthene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Fluorene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Hexachlorobenzene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Hexachlorobutadiene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Hexachlorocyclopentadiene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Hexachloroethane	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Indeno(1,2,3-cd)pyrene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Isophorone	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
2-Methylnaphthalene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
2-Methylphenol	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
4-Methylphenol	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
Naphthalene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
4-Nitroaniline	ND	379	1510 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
3-Nitroaniline	ND	379	1510 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
2-Nitroaniline	ND	379	1510 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
Nitrobenzene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
4-Nitrophenol	ND	379	1510 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
2-Nitrophenol	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
N-Nitrosodiphenylamine	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
N-Nitroso-di-n-propylamine	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Pentachlorophenol	ND	379	1510 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
Phenanthrene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Phenol	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Pyrene	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
2,4,6-Trichlorophenol	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
2,4,5-Trichlorophenol	ND	94.9	379 ug/Kg d	y 1	5F12003	06/15/15	06/17/15	SW8270D	J
Surrogate: 2-Fluorobiphenyl		62.5 %	45-10.	i	5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		59.5 %	35-10.	i	5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		58.6 %	35-100)	5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		61.6 %	40-100)	5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		57.5 %	30-12.	i	5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		79.4 %	35-12.	i	5F12003	06/15/15	06/17/15	SW8270D	2

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 60 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

DUP-02 1506109-16 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratori	es, LL	C					
Classical Chemistry Parameters										
% Solids	89	1.0	1.0	%	1	5F15928	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.05	2.09 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	N
Arsenic	1.01	0.627	2.09 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Beryllium	ND	0.209	1.05 mg	/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	ι
Cadmium	ND	0.209	1.05 mg	/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	ι
Chromium	3.89	0.418	2.09 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Copper	1.67	0.836	2.09 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Lead	2.22	0.314	1.05 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Nickel	2.03	0.627	2.09 mg	/Kg dry	/ 1	5F16726	06/16/15	06/25/15	SW6010C	
Selenium	ND	0.627	2.09 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	τ
Silver	ND	0.209	2.09 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	τ
Thallium	ND	0.627	1.67 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	τ
Zinc	8.07	1.05	4.18 mg	/Kg dry	, 1	5F16726	06/16/15	06/25/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0152	0.0385 mg	/Kg dry	/ 1	5F15934	06/15/15	06/17/15	SW7471B	1
Diesel Range Organics by GC										
Diesel Range Organics (C10-C28)	16.0	7.40	14.7 mg	/Kg dry	, 1	5F16703	06/16/15	06/22/15	SW8015C DRO	
Surrogate: o-Terphenyl		87.8 9	% 3	35-140		5F16703	06/16/15	06/22/15	SW8015C DRO	
Semivolatile Organic Compounds by Go	C/MS									
Acenaphthene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	τ
Acenaphthylene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	Ţ
Acetophenone	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Anthracene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Atrazine	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	τ
Benzaldehyde	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)anthracene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(a)pyrene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(b)fluoranthene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(g,h,i)perylene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
Benzo(k)fluoranthene	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
1,1-Biphenyl	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	1
4-Bromophenyl-phenylether	ND	90.5	362 ug/			5F12003	06/15/15	06/17/15	SW8270D	1
			U						GWIOATOD	
Butylbenzylphthalate	ND	90.5	362 ug/	/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	· ·
Butylbenzylphthalate Caprolactam	ND ND	90.5 90.5	362 ug/ 362 ug/			5F12003 5F12003	06/15/15 06/15/15	06/17/15 06/17/15	SW8270D SW8270D	J J

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

DUP-02 1506109-16 (Solid)

			Reportin	ıg						
Analyte	Result	MDL	Lim	it Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laborat	ories, LL	C					
Semivolatile Organic Compounds by GC/MS										
4-Chloro-3-methylphenol	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chloroaniline	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethoxy)methane	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-chloroethyl)ether	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,2'-Oxybis-1-chloropropane	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chloronaphthalene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Chlorophenol	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Chrysene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenz(a,h)anthracene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dibenzofuran	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-butylphthalate	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dichlorophenol	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Diethylphthalate	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dimethylphenol	ND	362	1440	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Dimethyl phthalate	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	905	3620	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrophenol	ND	905	3620	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4-Dinitrotoluene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,6-Dinitrotoluene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Di-n-octylphthalate	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluoranthene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Fluorene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobenzene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorobutadiene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachlorocyclopentadiene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Hexachloroethane	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Isophorone	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylnaphthalene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Methylphenol	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Methylphenol	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Naphthalene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
4-Nitroaniline	ND	362	1440	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
3-Nitroaniline	ND	362		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitroaniline	ND	362		ug/Kg dry		5F12003	06/15/15	06/17/15	SW8270D	U
Nitrobenzene	ND	90.5	362	ug/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

DUP-02 1506109-16 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	aborato	ries, LL	C					
Semivolatile Organic Compounds by	GC/MS									
4-Nitrophenol	ND	362	1440 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2-Nitrophenol	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitrosodiphenylamine	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pentachlorophenol	ND	362	1440 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenanthrene	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Phenol	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Pyrene	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,6-Trichlorophenol	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
2,4,5-Trichlorophenol	ND	90.5	362 u	g/Kg dry	1	5F12003	06/15/15	06/17/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		74.6 %		45-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2-Fluorophenol		67.6 %		35-105		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Nitrobenzene-d5		68.8 %		35-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Phenol-d6		70.2 %		40-100		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: Terphenyl-d14		70.4 %		30-125		5F12003	06/15/15	06/17/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		89.5 %		35-125		5F12003	06/15/15	06/17/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 63 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

${\bf Classical\ Chemistry\ Parameters\ -\ Quality\ Control}$

Empirical Laboratories, LLC

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5F15928

Duplicate (5F15928-DUP1)		Source: 150610	9-12	Prej	pared: 06/15/2015 Analyzed: 06/16/2015			
% Solids	83.50	1.0	1.0	%	82.98	0.632	20	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 64 of 109

225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

RPD

%REC

Metals (Total) by ICP - Quality Control Empirical Laboratories, LLC

Spike

Reporting

Project: Tyson Chicken

		Ke	porting	Spike	Source		%KEC		KPD	
Analyte	Result	MDL	Limit U	nits Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F16726										
Blank (5F16726-BLK1)				Prepared: 06/	16/2015 Ana	alyzed: 06/	25/2015			
Antimony	ND	1.00	2.00 mg/k	Ig wet						
Arsenic	ND	0.600	2.00 mg/I	Ig wet						
Beryllium	ND	0.200	1.00 mg/I	Ig wet						
Cadmium	ND	0.200	1.00 mg/I	Ig wet						
Chromium	ND	0.400	2.00 mg/I	Ig wet						
Copper	ND	0.800	2.00 mg/F	Ig wet						
Lead	ND	0.300	1.00 mg/F	Zg wet						
Nickel	ND	0.600	2.00 mg/F	Ig wet						
Selenium	ND	0.600	2.00 mg/F	Ig wet						
Silver	ND	0.200	2.00 mg/F	Ig wet						
Thallium	ND	0.600	1.60 mg/I	Ig wet						
Zinc	ND	1.00	4.00 mg/F	Ig wet						
LCS (5F16726-BS1)				Prepared: 06/2	16/2015 Ana	alyzed: 06/	25/2015			
Antimony	50.25	1.00	2.00 mg/k	Kg wet 50.00		100	80-120			
Arsenic	49.63	0.600	2.00 mg/F	Kg wet 50.00		99.3	80-120			
Beryllium	10.37	0.200	1.00 mg/F	Kg wet 10.00		104	80-120			
Cadmium	26.26	0.200	1.00 mg/I	Kg wet 25.00		105	80-120			
Chromium	42.27	0.400	2.00 mg/I	Kg wet 40.00		106	80-120			
Copper	52.56	0.800	2.00 mg/I	Kg wet 50.00		105	80-120			
Lead	52.79	0.300	1.00 mg/I	kg wet 50.00		106	80-120			
Nickel	100.6	0.600	2.00 mg/F	Xg wet 100.0		101	80-120			
Selenium	48.60	0.600	2.00 mg/F	Xg wet 50.00		97.2	80-120			
Silver	51.36	0.200	2.00 mg/F	Kg wet 50.00		103	80-120			
Гhallium	50.70	0.600	1.60 mg/I	Kg wet 50.00		101	80-120			
Zinc	100.5	1.00	4.00 mg/I	Kg wet 100.0		101	80-120			
Matrix Spike (5F16726-MS1)	;	Source: 150610	9-12	Prepared: 06/2	16/2015 Ana	alyzed: 06/	25/2015			
Antimony	31.75	1.12	2.23 mg/I	Kg dry 55.79	ND	56.9	80-120			
Arsenic	56.52	0.670	2.23 mg/I	Kg dry 55.79	2.049	97.6	80-120			
Beryllium	12.14	0.223	1.12 mg/I	Kg dry 11.16	0.3404	106	80-120			
Cadmium	29.41	0.223	1.12 mg/I	Kg dry 27.90	ND	105	80-120			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

Metals (Total) by ICP - Quality Control Empirical Laboratories, LLC

Spike

Source

%REC

Reporting

			reporting		Брікс	Source		/ UILL		IG D	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F16726											
Matrix Spike (5F16726-MS1)		Source: 1506	109-12	Prepa	ared: 06/1	6/2015 An	alyzed: 06/	25/2015			
Chromium	58.00	0.446	2.23	mg/Kg dry	44.63	9.692	108	80-120			
Copper	62.79	0.893	2.23	mg/Kg dry	55.79	3.211	107	80-120			
Lead	62.85	0.335	1.12	mg/Kg dry	55.79	4.524	105	80-120			
Nickel	116.7	0.670	2.23	mg/Kg dry	111.6	4.564	100	80-120			
Selenium	54.40	0.670	2.23	mg/Kg dry	55.79	ND	97.5	80-120			
Silver	57.23	0.223	2.23	mg/Kg dry	55.79	ND	103	80-120			
Thallium	56.18	0.670	1.79	mg/Kg dry	55.79	ND	101	80-120			
Zinc	124.1	1.12	4.46	mg/Kg dry	111.6	8.309	104	80-120			
Matrix Spike Dup (5F16726-MSD1)		Source: 1506	5109-12	Prepa	ared: 06/1	6/2015 Ana	alyzed: 06/	25/2015			
Antimony	35.29	1.19	2.39	mg/Kg dry	59.66	ND	59.1	80-120	10.6	20	
Arsenic	60.81	0.716	2.39	mg/Kg dry	59.66	2.049	98.5	80-120	7.31	20	
Beryllium	13.05	0.239	1.19	mg/Kg dry	11.93	0.3404	106	80-120	7.22	20	
Cadmium	31.45	0.239	1.19	mg/Kg dry	29.83	ND	105	80-120	6.73	20	
Chromium	62.37	0.477	2.39	mg/Kg dry	47.73	9.692	110	80-120	7.26	20	
Copper	67.66	0.955	2.39	mg/Kg dry	59.66	3.211	108	80-120	7.46	20	
Lead	67.11	0.358	1.19	mg/Kg dry	59.66	4.524	105	80-120	6.55	20	
Nickel	124.8	0.716	2.39	mg/Kg dry	119.3	4.564	101	80-120	6.70	20	
Selenium	58.24	0.716	2.39	mg/Kg dry	59.66	ND	97.6	80-120	6.81	20	
Silver	61.83	0.239	2.39	mg/Kg dry	59.66	ND	104	80-120	7.71	20	
Thallium	60.48	0.716	1.91	mg/Kg dry	59.66	ND	101	80-120	7.37	20	
Zinc	132.4	1.19	4.77	mg/Kg dry	119.3	8.309	104	80-120	6.51	20	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 66 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

Mercury by CVAA - Quality Control

Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15934											
Blank (5F15934-BLK1)				Prepa	ared: 06/1	5/2015 An	alyzed: 06/	/17/2015			
Mercury	ND	0.0130	0.0330	mg/Kg wet							U
LCS (5F15934-BS1)				Prepa	ared: 06/1	5/2015 An	alyzed: 06/	/17/2015			
Mercury	0.3156	0.0130	0.0330	mg/Kg wet	0.3333		94.7	80-120			
Batch 5F15935											
Blank (5F15935-BLK1)				Prepa	ared: 06/1	5/2015 An	alyzed: 06/	/17/2015			
Mercury	ND	0.0130	0.0330	mg/Kg wet							U
LCS (5F15935-BS1)				Prepa	ared: 06/1	5/2015 An	alyzed: 06/	/17/2015			
Mercury	0.3638	0.0130	0.0330	mg/Kg wet	0.3333		109	80-120			
Matrix Spike (5F15935-MS1)		Source: 150	06109-12	Prepa	ared: 06/1	5/2015 An	alyzed: 06/	/17/2015			
Mercury	0.3762	0.0152	0.0385	mg/Kg dry	0.3888	ND	96.8	80-120			
Matrix Spike Dup (5F15935-MSD1)		Source: 150	06109-12	Prepa	ared: 06/1	5/2015 An	alyzed: 06/	/17/2015			
Mercury	0.3530	0.0142	0.0362	mg/Kg dry	0.3652	ND	96.7	80-120	6.35	20	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 67 of 109

Analyte

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

RPD

Limit

Notes

RPD

06/29/2015 10:43

Volatile Organic Compounds by GC/MS - Quality Control

Empirical Laboratories, LLC

Units

Level

Source

Result

%REC

%REC

Limits

Reporting

Limit

MDL

Result

Blank (5F15915-BLK1)			Prepared & Analyzed: 06/15/2015	
Acetone	ND	5.00	20.0 ug/Kg wet	U
Benzene	ND	1.25	5.00 ug/Kg wet	U
Bromodichloromethane	ND	1.25	5.00 ug/Kg wet	U
Bromoform	ND	1.25	5.00 ug/Kg wet	U
Bromomethane	ND	2.50	10.0 ug/Kg wet	U
2-Butanone	ND	2.50	10.0 ug/Kg wet	U
Carbon disulfide	ND	1.25	5.00 ug/Kg wet	U
Carbon tetrachloride	ND	1.25	5.00 ug/Kg wet	U
Chlorobenzene	ND	1.25	5.00 ug/Kg wet	U
Chloroethane	ND	2.50	10.0 ug/Kg wet	U
Chloroform	ND	1.25	5.00 ug/Kg wet	U
Chloromethane	ND	2.50	10.0 ug/Kg wet	U
Cyclohexane	ND	1.25	5.00 ug/Kg wet	U
Dibromochloromethane	ND	1.25	5.00 ug/Kg wet	U
1,2-Dibromo-3-chloropropane	ND	2.50	10.0 ug/Kg wet	U
1,2-Dibromoethane (EDB)	ND	1.25	5.00 ug/Kg wet	U
1,2-Dichlorobenzene	ND	1.25	5.00 ug/Kg wet	U
1,3-Dichlorobenzene	ND	1.25	5.00 ug/Kg wet	U
1,4-Dichlorobenzene	ND	1.25	5.00 ug/Kg wet	U
Dichlorodifluoromethane	ND	2.50	10.0 ug/Kg wet	U
1,1-Dichloroethane	ND	1.25	5.00 ug/Kg wet	U
1,2-Dichloroethane	ND	1.25	5.00 ug/Kg wet	U
1,1-Dichloroethene	ND	1.25	5.00 ug/Kg wet	U
cis-1,2-Dichloroethene	ND	1.25	5.00 ug/Kg wet	U
trans-1,2-Dichloroethene	ND	1.25	5.00 ug/Kg wet	U
1,2-Dichloropropane	ND	1.25	5.00 ug/Kg wet	U
cis-1,3-Dichloropropene	ND	1.25	5.00 ug/Kg wet	U
trans-1,3-Dichloropropene	ND	1.25	5.00 ug/Kg wet	U
Ethylbenzene	ND	1.25	5.00 ug/Kg wet	U
2-Hexanone	ND	2.50	10.0 ug/Kg wet	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Project: Tyson Chicken
Project Number: EAE_Tyson
Project Manager: Jim Hulbert

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Reported: 06/29/2015 10:43

RPD

%REC

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Reporting

			Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15915											
Blank (5F15915-BLK1)				Prepa	ared & An	alyzed: 06	/15/2015				
sopropylbenzene	ND	1.25	5.00	ug/Kg wet							
Methylene chloride	5.41	2.50	10.0	ug/Kg wet							
Methyl Acetate	ND	2.50	10.0	ug/Kg wet							
Methylcyclohexane	ND	1.25	5.00	ug/Kg wet							
4-Methyl-2-pentanone	ND	2.50	10.0	ug/Kg wet							
Methyl t-Butyl Ether	ND	1.25	5.00	ug/Kg wet							
Styrene	ND	1.25	5.00	ug/Kg wet							
,1,2,2-Tetrachloroethane	ND	1.25	5.00	ug/Kg wet							
Tetrachloroethene	ND	1.25	5.00	ug/Kg wet							
Toluene	ND	1.25	5.00	ug/Kg wet							
,2,4-Trichlorobenzene	ND	1.25	5.00	ug/Kg wet							
,1,2-Trichloroethane	ND	1.25	5.00	ug/Kg wet							
,1,1-Trichloroethane	ND	1.25	5.00	ug/Kg wet							
Crichloroethene	ND	1.25	5.00	ug/Kg wet							
richlorofluoromethane	ND	2.50	10.0	ug/Kg wet							
,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.50	10.0	ug/Kg wet							
/inyl chloride	ND	1.25	5.00	ug/Kg wet							
n,p-Xylene	ND	2.50	10.0	ug/Kg wet							
p-Xylene	ND	1.25	5.00	ug/Kg wet							
urrogate: Bromofluorobenzene	27.58			ug/Kg wet	30.00		91.9	85-120			
urrogate: Dibromofluoromethane	29.00			ug/Kg wet	30.00		96.7	80-125			
'urrogate: 1,2-Dichloroethane-d4 'urrogate: Toluene-d8	26.40 27.40			ug/Kg wet ug/Kg wet	<i>30.00</i> <i>30.00</i>		88.0 91.3	75-140 85-115			
	27.40					alvadi 06		03-113			
Blank (5F15915-BLK2) Acetone	ND	250	1000	ug/Kg wet	ucu & All	alyzed: 06	13/2013				
Benzene	ND	62.5	250	ug/Kg wet							
Bromodichloromethane	ND	62.5		ug/Kg wet							
Bromoform	ND	62.5		ug/Kg wet							
Bromomethane	ND	125		ug/Kg wet							
2-Butanone	ND	125		ug/Kg wet							
Carbon disulfide	ND	62.5		ug/Kg wet							

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

09 Repoi

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 10:43

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

			Reporting		Spike	Source		/oKEC		KFD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15915											
Blank (5F15915-BLK2)				Prepa	ared & Ar	nalyzed: 06	/15/2015				
Carbon tetrachloride	ND	62.5	250	ug/Kg wet							J
Chlorobenzene	ND	62.5	250	ug/Kg wet							J
Chloroethane	ND	125	500	ug/Kg wet							Ţ
Chloroform	ND	62.5	250	ug/Kg wet							Ţ
Chloromethane	ND	125	500	ug/Kg wet							Ţ
Cyclohexane	ND	62.5	250	ug/Kg wet							Ţ
Dibromochloromethane	ND	62.5	250	ug/Kg wet							Ţ
1,2-Dibromo-3-chloropropane	ND	125	500	ug/Kg wet							Ţ
1,2-Dibromoethane (EDB)	ND	62.5	250	ug/Kg wet							Ţ
1,2-Dichlorobenzene	ND	62.5	250	ug/Kg wet							Ţ
1,3-Dichlorobenzene	ND	62.5	250	ug/Kg wet							τ
1,4-Dichlorobenzene	ND	62.5	250	ug/Kg wet							τ
Dichlorodifluoromethane	ND	125	500	ug/Kg wet							Ţ
1,1-Dichloroethane	ND	62.5	250	ug/Kg wet							Ţ
1,2-Dichloroethane	ND	62.5	250	ug/Kg wet							Ţ
1,1-Dichloroethene	ND	62.5	250	ug/Kg wet							J
cis-1,2-Dichloroethene	ND	62.5	250	ug/Kg wet							Ţ
trans-1,2-Dichloroethene	ND	62.5	250	ug/Kg wet							Ţ
1,2-Dichloropropane	ND	62.5	250	ug/Kg wet							Ţ
cis-1,3-Dichloropropene	ND	62.5	250	ug/Kg wet							Ţ
trans-1,3-Dichloropropene	ND	62.5	250	ug/Kg wet							Ţ
Ethylbenzene	ND	62.5	250	ug/Kg wet							Ţ
2-Hexanone	ND	125	500	ug/Kg wet							Ţ
Isopropylbenzene	ND	62.5	250	ug/Kg wet							Ţ
Methylene chloride	331	125	500	ug/Kg wet							D
Methyl Acetate	ND	125	500	ug/Kg wet							Į
Methylcyclohexane	ND	62.5	250	ug/Kg wet							Į
4-Methyl-2-pentanone	ND	125	500	ug/Kg wet							Į
Methyl t-Butyl Ether	ND	62.5	250	ug/Kg wet							Į
Styrene	ND	62.5		ug/Kg wet							Ţ

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 70 of 109

Project: Tyson Chicken 225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

%REC

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Spike

Source

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15915											
Blank (5F15915-BLK2)				Prepa	ared & An	alyzed: 06	/15/2015				
,1,2,2-Tetrachloroethane	ND	62.5	250	ug/Kg wet							1
Tetrachloroethene	ND	62.5	250	ug/Kg wet							1
Toluene	ND	62.5	250	ug/Kg wet							1
,2,4-Trichlorobenzene	ND	62.5	250	ug/Kg wet							1
,1,2-Trichloroethane	ND	62.5	250	ug/Kg wet							1
,1,1-Trichloroethane	ND	62.5	250	ug/Kg wet							1
Trichloroethene	ND	62.5	250	ug/Kg wet							1
Trichlorofluoromethane	ND	125	500	ug/Kg wet							1
,1,2-Trichloro-1,2,2-trifluoroethane	ND	125	500	ug/Kg wet							1
Vinyl chloride	ND	62.5	250	ug/Kg wet							1
n,p-Xylene	ND	125	500	ug/Kg wet							1
p-Xylene	ND	62.5	250	ug/Kg wet							1
Surrogate: Bromofluorobenzene	27.24			ug/Kg wet	30.00		90.8	85-120			
Surrogate: Dibromofluoromethane	28.81			ug/Kg wet	30.00		96.0	80-125			
Surrogate: 1,2-Dichloroethane-d4	27.17			ug/Kg wet	30.00		90.6	75-140			
Surrogate: Toluene-d8	27.07			ug/Kg wet	30.00		90.2	85-115			
LCS (5F15915-BS1)						alyzed: 06					
Acetone	128.5	5.00	20.0	ug/Kg wet	100.0		128	20-160			
Benzene	52.09	1.25	5.00	ug/Kg wet	50.00		104	75-125			
Bromodichloromethane	55.10	1.25	5.00	ug/Kg wet	50.00		110	70-130			
Bromoform	50.70	1.25	5.00	ug/Kg wet	50.00		101	55-135			
Bromomethane	51.11	2.50	10.0	ug/Kg wet	50.00		102	30-160			
2-Butanone	118.2	2.50	10.0	ug/Kg wet	100.0		118	30-160			
Carbon disulfide	54.09	1.25	5.00	ug/Kg wet	50.00		108	45-160			
Carbon tetrachloride	49.92	1.25	5.00	ug/Kg wet	50.00		99.8	65-135			
Chlorobenzene	50.48	1.25	5.00	ug/Kg wet	50.00		101	75-125			
Chloroethane	45.66	2.50	10.0	ug/Kg wet	50.00		91.3	40-155			
Chloroform	49.25	1.25	5.00	ug/Kg wet	50.00		98.5	70-125			
Chloromethane	53.41	2.50	10.0	ug/Kg wet	50.00		107	50-130			
Cyclohexane	50.22	1.25	5.00	ug/Kg wet	50.00		100	65-140			
Dibromochloromethane	54.66	1.25	7.00	ug/Kg wet	50.00		109	65-130			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Project: Tyson Chicken Project Number: EAE_Tyson

Reported: 06/29/2015 10:43

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15915											
LCS (5F15915-BS1)				Prepa	red & An	nalyzed: 06/15	5/2015				
1,2-Dibromo-3-chloropropane	49.83	2.50	10.0	ug/Kg wet	50.00		99.7	40-135			
1,2-Dibromoethane (EDB)	52.63	1.25	5.00	ug/Kg wet	50.00		105	70-125			
1,2-Dichlorobenzene	50.45	1.25	5.00	ug/Kg wet	50.00		101	75-120			
1,3-Dichlorobenzene	51.29	1.25	5.00	ug/Kg wet	50.00		103	70-125			
1,4-Dichlorobenzene	50.71	1.25	5.00	ug/Kg wet	50.00		101	70-125			
Dichlorodifluoromethane	54.06	2.50	10.0	ug/Kg wet	50.00		108	35-135			
1,1-Dichloroethane	49.87	1.25	5.00	ug/Kg wet	50.00		99.7	75-125			
1,2-Dichloroethane	51.92	1.25	5.00	ug/Kg wet	50.00		104	70-135			
1,1-Dichloroethene	49.28	1.25	5.00	ug/Kg wet	50.00		98.6	65-135			
cis-1,2-Dichloroethene	49.90	1.25	5.00	ug/Kg wet	50.00		99.8	65-125			
trans-1,2-Dichloroethene	50.48	1.25	5.00	ug/Kg wet	50.00		101	65-135			
1,2-Dichloropropane	53.13	1.25	5.00	ug/Kg wet	50.00		106	70-120			
cis-1,3-Dichloropropene	58.14	1.25	5.00	ug/Kg wet	50.00		116	70-125			
trans-1,3-Dichloropropene	53.15	1.25	5.00	ug/Kg wet	50.00		106	65-125			
Ethylbenzene	52.94	1.25	5.00	ug/Kg wet	50.00		106	75-125			
2-Hexanone	115.5	2.50	10.0	ug/Kg wet	100.0		115	45-145			
Isopropylbenzene	51.65	1.25	5.00	ug/Kg wet	50.00		103	75-130			
Methylene chloride	56.40	2.50	10.0	ug/Kg wet	50.00		113	55-140			
Methyl Acetate	46.98	2.50	10.0	ug/Kg wet	50.00		94.0	45-165			
Methylcyclohexane	51.86	1.25	5.00	ug/Kg wet	50.00		104	65-135			
4-Methyl-2-pentanone	109.3	2.50	10.0	ug/Kg wet	100.0		109	45-145			
Methyl t-Butyl Ether	51.50	1.25	5.00	ug/Kg wet	50.00		103	55-150			
Styrene	56.02	1.25	5.00	ug/Kg wet	50.00		112	75-125			
1,1,2,2-Tetrachloroethane	52.09	1.25	5.00	ug/Kg wet	50.00		104	55-130			
Tetrachloroethene	50.50	1.25	5.00	ug/Kg wet	50.00		101	65-140			
Toluene	51.72	1.25	5.00	ug/Kg wet	50.00		103	70-125			
1,2,4-Trichlorobenzene	50.78	1.25	5.00	ug/Kg wet	50.00		102	65-130			
1,1,2-Trichloroethane	52.28	1.25	5.00	ug/Kg wet	50.00		105	60-125			
1,1,1-Trichloroethane	49.81	1.25	5.00	ug/Kg wet	50.00		99.6	70-135			
Trichloroethene	52.23	1.25	5.00	ug/Kg wet	50.00		104	75-125			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source	· ·	%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15915											
LCS (5F15915-BS1)				Prepa	ared & An	alyzed: 06	/15/2015				
Trichlorofluoromethane	52.41	2.50	10.0	ug/Kg wet	50.00		105	25-185			
1,1,2-Trichloro-1,2,2-trifluoroethane	51.16	2.50	10.0	ug/Kg wet	50.00		102	20-185			
Vinyl chloride	55.55	1.25	5.00	ug/Kg wet	50.00		111	60-125			
m,p-Xylene	108.3	2.50	10.0	ug/Kg wet	100.0		108	80-125			
o-Xylene	51.50	1.25	5.00	ug/Kg wet	50.00		103	75-125			
Surrogate: Bromofluorobenzene	28.36			ug/Kg wet	30.00		94.5	85-120			
Surrogate: Dibromofluoromethane	27.38			ug/Kg wet	30.00		91.3	80-125			
Surrogate: 1,2-Dichloroethane-d4	27.14			ug/Kg wet	30.00		90.5	75-140			
Surrogate: Toluene-d8	27.70			ug/Kg wet	30.00		92.3	85-115			
Matrix Spike (5F15915-MS1)		Source: 150				alyzed: 06					
Acetone	69.15	4.46	17.8	ug/Kg dry	89.14	25.12	49.4	20-160			
Benzene	34.65	1.11	4.46	ug/Kg dry	44.57	ND	77.8	75-125			
Bromodichloromethane	37.23	1.11	4.46	ug/Kg dry	44.57	ND	83.5	70-130			
Bromoform	29.29	1.11	4.46	ug/Kg dry	44.57	ND	65.7	55-135			
Bromomethane	9.274	2.23	8.91	ug/Kg dry	44.57	ND	20.8	30-160			
2-Butanone	65.38	2.23	8.91	ug/Kg dry	89.14	ND	73.4	30-160			
Carbon disulfide	39.55	1.11	4.46	ug/Kg dry	44.57	1.295	85.8	45-160			
Carbon tetrachloride	34.36	1.11	4.46	ug/Kg dry	44.57	ND	77.1	65-135			
Chlorobenzene	24.93	1.11	4.46	ug/Kg dry	44.57	ND	55.9	75-125			
Chloroethane	40.15	2.23	8.91	ug/Kg dry	44.57	ND	90.1	40-155			
Chloroform	34.68	1.11	4.46	ug/Kg dry	44.57	ND	77.8	70-125			
Chloromethane	32.98	2.23	8.91	ug/Kg dry	44.57	ND	74.0	50-130			
Cyclohexane	32.25	1.11	4.46	ug/Kg dry	44.57	ND	72.4	65-140			
Dibromochloromethane	32.82	1.11	4.46	ug/Kg dry	44.57	ND	73.6	65-130			
1,2-Dibromo-3-chloropropane	27.25	2.23	8.91	ug/Kg dry	44.57	ND	61.1	40-135			
1,2-Dibromoethane (EDB)	31.90	1.11	4.46	ug/Kg dry	44.57	ND	71.6	70-125			
1,2-Dichlorobenzene	17.68	1.11	4.46	ug/Kg dry	44.57	ND	39.7	75-120			
1,3-Dichlorobenzene	16.42	1.11	4.46	ug/Kg dry	44.57	ND	36.9	70-125			
1,4-Dichlorobenzene	15.77	1.11		ug/Kg dry	44.57	ND	35.4	70-125			
Dichlorodifluoromethane	39.20	2.23		ug/Kg dry	44.57	ND	87.9	35-135			
1,1-Dichloroethane	38.28	1.11		ug/Kg dry			85.9				
,1-исшогоепапе	38.28	1.11	4.46	ug/Kg ary	44.57	ND	83.9	75-125			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

506109 R

 225 Schilling Circle, Suite 400
 Project Number: EAE_Tyson

 Hunt Valley MD, 21031
 Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Page 74 of 109

Volatile Organic Compounds by GC/MS - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Empirical Laboratories, LLC

Project: Tyson Chicken

	Source: 1506	109-12	Prepa	ared & Ana	alyzed: 06	/15/2015			
36.53	1.11	4.46	ug/Kg dry	44.57	ND	82.0	70-135		
36.70	1.11	4.46	ug/Kg dry	44.57	ND	82.4	65-135		
34.90	1.11	4.46	ug/Kg dry	44.57	ND	78.3	65-125		
39.29	1.11	4.46	ug/Kg dry	44.57	ND	88.1	65-135		
35.13	1.11	4.46	ug/Kg dry	44.57	ND	78.8	70-120		
34.34	1.11	4.46	ug/Kg dry	44.57	ND	77.1	70-125		
30.04	1.11	4.46	ug/Kg dry	44.57	ND	67.4	65-125		
24.69	1.11	4.46	ug/Kg dry	44.57	ND	55.4	75-125		
57.38	2.23	8.91	ug/Kg dry	89.14	ND	64.4	45-145		
22.30	1.11	4.46	ug/Kg dry	44.57	ND	50.0	75-130		
39.03	2.23	8.91	ug/Kg dry	44.57	ND	87.6	55-140		
20.52	2.23	8.91	ug/Kg dry	44.57	ND	46.0	45-165		
30.68	1.11	4.46	ug/Kg dry	44.57	ND	68.8	65-135		
72.52	2.23	8.91	ug/Kg dry	89.14	ND	81.4	45-145		
41.68	1.11	4.46	ug/Kg dry	44.57	ND	93.5	55-150		
23.63	1.11	4.46	ug/Kg dry	44.57	ND	53.0	75-125		
44.36	1.11	4.46	ug/Kg dry	44.57	ND	99.5	55-130		
24.09	1.11	4.46	ug/Kg dry	44.57	ND	54.1	65-140		
29.10	1.11	4.46	ug/Kg dry	44.57	ND	65.3	70-125		
10.81	1.11	4.46	ug/Kg dry	44.57	ND	24.3	65-130		
33.66	1.11	4.46	ug/Kg dry	44.57	ND	75.5	60-125		
34.83	1.11	4.46	ug/Kg dry	44.57	ND	78.1	70-135		
29.03	1.11	4.46	ug/Kg dry	44.57	ND	65.1	75-125		
46.66	2.23	8.91	ug/Kg dry	44.57	ND	105	25-185		
36.35	2.23	8.91	ug/Kg dry	44.57	ND	81.6	20-185		
34.12	1.11	4.46	ug/Kg dry	44.57	ND	76.6	60-125		
48.63	2.23	8.91	ug/Kg dry	89.14	ND	54.6	80-125		
24.18	1.11	4.46	ug/Kg dry	44.57	ND	54.3	75-125		
25.75			ug/Kg dry	26.74		96.3	85-120		
29.25			ug/Kg dry	26.74		109	80-125		
	36.70 34.90 39.29 35.13 34.34 30.04 24.69 57.38 22.30 39.03 20.52 30.68 72.52 41.68 23.63 44.36 24.09 29.10 10.81 33.66 34.83 29.03 46.66 36.35 34.12 48.63 24.18	36.53 1.11 36.70 1.11 34.90 1.11 39.29 1.11 35.13 1.11 34.34 1.11 30.04 1.11 57.38 2.23 22.30 1.11 39.03 2.23 20.52 2.23 30.68 1.11 72.52 2.23 41.68 1.11 23.63 1.11 44.36 1.11 29.10 1.11 10.81 1.11 33.66 1.11 34.83 1.11 29.03 1.11 46.66 2.23 34.12 1.11 48.63 2.23 24.18 1.11	36.70 1.11 4.46 34.90 1.11 4.46 39.29 1.11 4.46 35.13 1.11 4.46 34.34 1.11 4.46 30.04 1.11 4.46 57.38 2.23 8.91 22.30 1.11 4.46 39.03 2.23 8.91 20.52 2.23 8.91 30.68 1.11 4.46 72.52 2.23 8.91 41.68 1.11 4.46 23.63 1.11 4.46 24.09 1.11 4.46 29.10 1.11 4.46 29.10 1.11 4.46 33.66 1.11 4.46 34.83 1.11 4.46 34.83 1.11 4.46 29.03 1.11 4.46 34.83 1.11 4.46 34.83 1.11 4.46 34.83 1.11 4.46 36.35 2.23 8.91 34.12	36.53 1.11 4.46 ug/Kg dry 36.70 1.11 4.46 ug/Kg dry 34.90 1.11 4.46 ug/Kg dry 39.29 1.11 4.46 ug/Kg dry 35.13 1.11 4.46 ug/Kg dry 34.34 1.11 4.46 ug/Kg dry 30.04 1.11 4.46 ug/Kg dry 24.69 1.11 4.46 ug/Kg dry 22.30 1.11 4.46 ug/Kg dry 22.30 1.11 4.46 ug/Kg dry 30.08 1.11 4.46 ug/Kg dry 20.52 2.23 8.91 ug/Kg dry 30.68 1.11 4.46 ug/Kg dry 41.68 1.11 4.46 ug/Kg dry 41.68 1.11 4.46 ug/Kg dry 42.363 1.11 4.46 ug/Kg dry 41.36 1.11 4.46 ug/Kg dry 41.36 1.11 4.46 ug/Kg dry 41.36 1.11 4.46 ug/Kg dry 41.38 1.11 4.46 ug/Kg dry 41.39 1.11 4.46 ug/Kg dry 41.30 1.11 4.46 ug/Kg dry 41.31 4.46 ug/Kg dry 41.32 1.11 4.46 ug/Kg dry 41.33 1.11 4.46 ug/Kg dry 42.09 1.11 4.46 ug/Kg dry 43.366 1.11 4.46 ug/Kg dry 44.36 1.11 4.46 ug/Kg dry 45.36 1.11 4.46 ug/Kg dry 46.66 2.23 8.91 ug/Kg dry	36.53 1.11 4.46 ug/Kg dry 44.57 36.70 1.11 4.46 ug/Kg dry 44.57 34.90 1.11 4.46 ug/Kg dry 44.57 39.29 1.11 4.46 ug/Kg dry 44.57 35.13 1.11 4.46 ug/Kg dry 44.57 34.34 1.11 4.46 ug/Kg dry 44.57 30.04 1.11 4.46 ug/Kg dry 44.57 24.69 1.11 4.46 ug/Kg dry 44.57 57.38 2.23 8.91 ug/Kg dry 44.57 39.03 2.23 8.91 ug/Kg dry 44.57 30.68 1.11 4.46 ug/Kg dry 44.57 30.68 1.11 4.46 ug/Kg dry 44.57 22.52 2.23 8.91 ug/Kg dry 44.57 23.63 1.11 4.46 ug/Kg dry 44.57 24.09 1.11 4.46 ug/Kg dry 44.57 24.09 1.11 4.46 ug/Kg dry 44.57 24.09 1.11 4.46 ug/Kg dry 44.57 29.10 1.11 4.46 ug/Kg dry 44.57 33.66 1.11 4.46 ug/Kg dry 44.57 33.66 1.11 4.46 ug/Kg dry 44.57 34.83 1.11 4.46 ug/Kg dry 44.57	36.53 1.11 4.46 ug/Kg dry 44.57 ND 36.70 1.11 4.46 ug/Kg dry 44.57 ND 34.90 1.11 4.46 ug/Kg dry 44.57 ND 39.29 1.11 4.46 ug/Kg dry 44.57 ND 35.13 1.11 4.46 ug/Kg dry 44.57 ND 34.34 1.11 4.46 ug/Kg dry 44.57 ND 30.04 1.11 4.46 ug/Kg dry 44.57 ND 24.69 1.11 4.46 ug/Kg dry 44.57 ND 57.38 2.23 8.91 ug/Kg dry 44.57 ND 22.30 1.11 4.46 ug/Kg dry 44.57 ND 39.03 2.23 8.91 ug/Kg dry 44.57 ND 30.68 1.11 4.46 ug/Kg dry 44.57 ND 30.68 1.11 4.46 ug/Kg dry 44.57 ND 41.68 1.11 4.46 ug/Kg dry 44.57 ND 23.63 1.11 4.46 ug/Kg dry 44.57 ND 24.09 1.11 4.46 ug/Kg dry 44.57 ND 24.09 1.11 4.46 ug/Kg dry 44.57 ND 24.09 1.11 4.46 ug/Kg dry 44.57 ND 29.10 1.11 4.46 ug/Kg dry 44.57 ND 30.68 1.11 4.46 ug/Kg dry 44.57 ND 44.36 1.11 4.46 ug/Kg dry 44.57 ND 44.36 1.11 4.46 ug/Kg dry 44.57 ND 45.60 1.11 4.46 ug/Kg dry 44.57 ND 46.61 1.11 4.46 ug/Kg dry 44.57 ND 46.62 2.23 8.91 ug/Kg dry 44.57 ND 46.66 2.23 8.91 ug/Kg dry 44.57 ND	36.53 1.11 4.46 ug/Kg dry 44.57 ND 82.0 36.70 1.11 4.46 ug/Kg dry 44.57 ND 82.4 34.90 1.11 4.46 ug/Kg dry 44.57 ND 78.3 39.29 1.11 4.46 ug/Kg dry 44.57 ND 78.8 35.13 1.11 4.46 ug/Kg dry 44.57 ND 78.8 34.34 1.11 4.46 ug/Kg dry 44.57 ND 77.1 30.04 1.11 4.46 ug/Kg dry 44.57 ND 67.4 24.69 1.11 4.46 ug/Kg dry 44.57 ND 55.4 57.38 2.23 8.91 ug/Kg dry 44.57 ND 64.4 22.30 1.11 4.46 ug/Kg dry 44.57 ND 87.6 20.52 2.23 8.91 ug/Kg dry 44.57 ND 87.6 20.52 2.23 8.91 ug/Kg dry 44.57 ND 87.6 30.68 1.11 4.46 ug/Kg dry 44.57 ND 68.8 72.52 2.23 8.91 ug/Kg dry 44.57 ND 81.4 41.68 1.11 4.46 ug/Kg dry 44.57 ND 93.5 23.63 1.11 4.46 ug/Kg dry 44.57 ND 53.0 44.36 1.11 4.46 ug/Kg dry 44.57 ND 53.0 44.36 1.11 4.46 ug/Kg dry 44.57 ND 53.0 33.68 1.11 4.46 ug/Kg dry 44.57 ND 65.3 10.81 1.11 4.46 ug/Kg dry 44.57 ND 53.0 44.36 1.11 4.46 ug/Kg dry 44.57 ND 54.1 29.10 1.11 4.46 ug/Kg dry 44.57 ND 65.3 10.81 1.11 4.46 ug/Kg dry 44.57 ND 65.3 10.81 1.11 4.46 ug/Kg dry 44.57 ND 65.3 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 34.83 1.11 4.46 ug/Kg dry 44.57 ND 65.3 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5	36.53 1.11 4.46 ug/Kg dry 44.57 ND 82.0 70-135 36.70 1.11 4.46 ug/Kg dry 44.57 ND 82.4 65-135 34.90 1.11 4.46 ug/Kg dry 44.57 ND 78.3 65-125 39.29 1.11 4.46 ug/Kg dry 44.57 ND 78.8 70-120 35.13 1.11 4.46 ug/Kg dry 44.57 ND 78.8 70-120 34.34 1.11 4.46 ug/Kg dry 44.57 ND 78.8 70-120 34.34 1.11 4.46 ug/Kg dry 44.57 ND 67.4 65-125 24.69 1.11 4.46 ug/Kg dry 44.57 ND 55.4 75-125 57.38 2.23 8.91 ug/Kg dry 89.14 ND 64.4 45-145 22.30 1.11 4.46 ug/Kg dry 44.57 ND 87.6 55-140 20.52 2.23 8.91 ug/Kg dry 44.57 ND 87.6 55-140 20.52 2.23 8.91 ug/Kg dry 44.57 ND 87.6 55-140 20.52 2.23 8.91 ug/Kg dry 44.57 ND 88.6 65-135 72.52 2.23 8.91 ug/Kg dry 44.57 ND 88.6 65-135 72.52 2.23 8.91 ug/Kg dry 44.57 ND 88.6 65-135 72.52 3.891 ug/Kg dry 44.57 ND 88.6 65-135 72.52 3.891 ug/Kg dry 44.57 ND 88.4 45-145 41.68 1.11 4.46 ug/Kg dry 44.57 ND 81.4 45-145 41.68 1.11 4.46 ug/Kg dry 44.57 ND 93.5 55-150 23.63 1.11 4.46 ug/Kg dry 44.57 ND 53.0 75-125 44.36 1.11 4.46 ug/Kg dry 44.57 ND 53.0 75-125 10.81 1.11 4.46 ug/Kg dry 44.57 ND 65.3 70-125 10.81 1.11 4.46 ug/Kg dry 44.57 ND 65.3 70-125 10.81 1.11 4.46 ug/Kg dry 44.57 ND 65.3 70-125 10.81 1.11 4.46 ug/Kg dry 44.57 ND 65.3 70-125 29.03 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 65.1 75-125 46.66 2.23 8.91 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 76.6 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 65.1 75-125 46.66 2.23 8.91 ug/Kg dry 44.57 ND 65.1 75-125 46.66 2.23 8.91 ug/Kg dry 44.57 ND 65.1 75-125 46.66 2.23 8.91 ug/Kg dry 44.57 ND 65.1 75-125 48.63 2.23 8.91 ug/Kg dry 44.57 ND 65.1 75-125	36.53 1.11 4.46 ug/Kg dry 44.57 ND 82.0 70-135 36.70 1.11 4.46 ug/Kg dry 44.57 ND 82.4 65-135 34.90 1.11 4.46 ug/Kg dry 44.57 ND 78.3 65-125 39.29 1.11 4.46 ug/Kg dry 44.57 ND 78.8 70-120 34.31 1.11 4.46 ug/Kg dry 44.57 ND 77.1 70-125 30.04 1.11 4.46 ug/Kg dry 44.57 ND 67.4 65-125 24.69 1.11 4.46 ug/Kg dry 44.57 ND 55.4 75-125 57.38 2.23 8.91 ug/Kg dry 44.57 ND 55.4 75-125 57.38 2.23 8.91 ug/Kg dry 44.57 ND 87.6 55-140 20.52 2.23 8.91 ug/Kg dry 44.57 ND 87.6 55-140 20.52 2.23 8.91 ug/Kg dry 44.57 ND 68.8 65-135 30.68 1.11 4.46 ug/Kg dry 44.57 ND 68.8 65-135 72.52 2.23 8.91 ug/Kg dry 44.57 ND 93.5 55-150 23.63 1.11 4.46 ug/Kg dry 44.57 ND 93.5 55-150 23.63 1.11 4.46 ug/Kg dry 44.57 ND 93.5 55-150 23.63 1.11 4.46 ug/Kg dry 44.57 ND 93.5 55-150 23.63 1.11 4.46 ug/Kg dry 44.57 ND 53.0 75-125 44.36 1.11 4.46 ug/Kg dry 44.57 ND 53.0 75-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 53.0 75-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 53.0 75-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 54.1 65-140 29.10 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 54.1 65-140 29.10 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-125 33.66 1.11 4.46 ug/Kg dry 44.57 ND 55.1 70-135 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125 34.83 1.11 4.46 ug/Kg dry 44.57 ND 75.5 60-125

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

		1	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (5F15915-MS1)		Source: 1506	109-12	Prepa	red & An	alyzed: 06/	15/2015				
Surrogate: Toluene-d8	23.66			ug/Kg dry	26.74		88.5	85-115			
Matrix Spike Dup (5F15915-MSD1)		Source: 1506	109-12	Prepa	red & An	alyzed: 06/	15/2015				
Acetone	96.60	4.44	17.7	ug/Kg dry	88.74	25.12	80.5	20-160	33.1	30	
Benzene	44.56	1.11	4.44	ug/Kg dry	44.37	ND	100	75-125	25.0	30	
Bromodichloromethane	49.94	1.11	4.44	ug/Kg dry	44.37	ND	113	70-130	29.2	30	
Bromoform	42.32	1.11	4.44	ug/Kg dry	44.37	ND	95.4	55-135	36.4	30	
Bromomethane	16.54	2.22	8.87	ug/Kg dry	44.37	ND	37.3	30-160	56.3	30	
2-Butanone	95.45	2.22	8.87	ug/Kg dry	88.74	ND	108	30-160	37.4	30	
Carbon disulfide	48.43	1.11	4.44	ug/Kg dry	44.37	1.295	106	45-160	20.2	30	
Carbon tetrachloride	45.52	1.11	4.44	ug/Kg dry	44.37	ND	103	65-135	27.9	30	
Chlorobenzene	36.88	1.11	4.44	ug/Kg dry	44.37	ND	83.1	75-125	38.7	30	
Chloroethane	40.72	2.22	8.87	ug/Kg dry	44.37	ND	91.8	40-155	1.42	30	
Chloroform	44.11	1.11	4.44	ug/Kg dry	44.37	ND	99.4	70-125	23.9	30	
Chloromethane	37.62	2.22	8.87	ug/Kg dry	44.37	ND	84.8	50-130	13.1	30	
Cyclohexane	41.55	1.11	4.44	ug/Kg dry	44.37	ND	93.6	65-140	25.2	30	
Dibromochloromethane	46.54	1.11	4.44	ug/Kg dry	44.37	ND	105	65-130	34.6	30	
1,2-Dibromo-3-chloropropane	43.72	2.22	8.87	ug/Kg dry	44.37	ND	98.5	40-135	46.4	30	
1,2-Dibromoethane (EDB)	46.97	1.11	4.44	ug/Kg dry	44.37	ND	106	70-125	38.2	30	
1,2-Dichlorobenzene	30.39	1.11	4.44	ug/Kg dry	44.37	ND	68.5	75-120	52.9	30	*
1,3-Dichlorobenzene	28.96	1.11	4.44	ug/Kg dry	44.37	ND	65.3	70-125	55.2	30	*
1,4-Dichlorobenzene	27.84	1.11	4.44	ug/Kg dry	44.37	ND	62.7	70-125	55.4	30	*
Dichlorodifluoromethane	30.56	2.22	8.87	ug/Kg dry	44.37	ND	68.9	35-135	24.8	30	
1,1-Dichloroethane	43.75	1.11	4.44	ug/Kg dry	44.37	ND	98.6	75-125	13.3	30	
1,2-Dichloroethane	48.27	1.11	4.44	ug/Kg dry	44.37	ND	109	70-135	27.7	30	
1,1-Dichloroethene	45.33	1.11	4.44	ug/Kg dry	44.37	ND	102	65-135	21.0	30	
cis-1,2-Dichloroethene	44.53	1.11	4.44	ug/Kg dry	44.37	ND	100	65-125	24.2	30	
trans-1,2-Dichloroethene	44.39	1.11	4.44	ug/Kg dry	44.37	ND	100	65-135	12.2	30	
1,2-Dichloropropane	46.65	1.11	4.44	ug/Kg dry	44.37	ND	105	70-120	28.2	30	
cis-1,3-Dichloropropene	45.97	1.11	4.44	ug/Kg dry	44.37	ND	104	70-125	29.0	30	
trans-1,3-Dichloropropene	41.13	1.11	4.44	ug/Kg dry	44.37	ND	92.7	65-125	31.2	30	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 75 of 109

225 Schilling Circle, Suite 400 Project
Hunt Valley MD, 21031 Project

Project: Tyson Chicken

Project Number: EAE_Tyson

Project Manager: Jim Hulbert

06/29/2015 10:43

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Spike

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15915											
Matrix Spike Dup (5F15915-MSD1)		Source: 1506	109-12	Prepa	red & An	nalyzed: 06	/15/2015				
Ethylbenzene	36.90	1.11	4.44	ug/Kg dry	44.37	ND	83.2	75-125	39.6	30	
2-Hexanone	93.64	2.22	8.87	ug/Kg dry	88.74	ND	106	45-145	48.0	30	
Isopropylbenzene	34.31	1.11	4.44	ug/Kg dry	44.37	ND	77.3	75-130	42.4	30	
Methylene chloride	41.95	2.22	8.87	ug/Kg dry	44.37	ND	94.5	55-140	7.20	30	
Methyl Acetate	21.72	2.22	8.87	ug/Kg dry	44.37	ND	48.9	45-165	5.69	30	
Methylcyclohexane	42.90	1.11	4.44	ug/Kg dry	44.37	ND	96.7	65-135	33.2	30	
4-Methyl-2-pentanone	107.9	2.22	8.87	ug/Kg dry	88.74	ND	122	45-145	39.2	30	
Methyl t-Butyl Ether	49.74	1.11	4.44	ug/Kg dry	44.37	ND	112	55-150	17.6	30	
Styrene	36.31	1.11	4.44	ug/Kg dry	44.37	ND	81.8	75-125	42.3	30	
1,1,2,2-Tetrachloroethane	65.70	1.11	4.44	ug/Kg dry	44.37	ND	148	55-130	38.8	30	•
Tetrachloroethene	36.22	1.11	4.44	ug/Kg dry	44.37	ND	81.6	65-140	40.2	30	
Toluene	39.83	1.11	4.44	ug/Kg dry	44.37	ND	89.8	70-125	31.2	30	
1,2,4-Trichlorobenzene	24.52	1.11	4.44	ug/Kg dry	44.37	ND	55.3	65-130	77.6	30	•
1,1,2-Trichloroethane	46.25	1.11		ug/Kg dry	44.37	ND	104	60-125	31.5	30	
1,1,1-Trichloroethane	45.17	1.11	4.44	ug/Kg dry	44.37	ND	102	70-135	25.9	30	
Trichloroethene	39.12	1.11	4.44	ug/Kg dry	44.37	ND	88.2	75-125	29.6	30	
Trichlorofluoromethane	50.63	2.22	8.87	ug/Kg dry	44.37	ND	114	25-185	8.15	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	47.25	2.22	8.87	ug/Kg dry	44.37	ND	106	20-185	26.1	30	
Vinyl chloride	36.29	1.11	4.44	ug/Kg dry	44.37	ND	81.8	60-125	6.16	30	
m,p-Xylene	72.97	2.22	8.87	ug/Kg dry	88.74	ND	82.2	80-125	40.0	30	
o-Xylene	35.80	1.11		ug/Kg dry	44.37	ND	80.7	75-125	38.7	30	
Surrogate: Bromofluorobenzene	26.05			ug/Kg dry	26.62		97.8	85-120			
Surrogate: Dibromofluoromethane	28.31			ug/Kg dry	26.62		106	80-125			
Surrogate: 1,2-Dichloroethane-d4	27.18			ug/Kg dry	26.62		102	75-140			
Surrogate: Toluene-d8	24.32			ug/Kg dry	26.62		91.4	85-115			
Batch 5F17003											
Blank (5F17003-BLK1)					red & Ar	nalyzed: 06	/17/2015				
Acetone	ND	5.00	20.0	ug/Kg wet							QU
Benzene	ND	1.25	5.00	ug/Kg wet							Ţ
Bromodichloromethane	ND	1.25	5.00	ug/Kg wet							Ţ
Bromoform	ND	1.25	5.00	ug/Kg wet							Į

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 76 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Analyte

Project: Tyson Chicken

Project Number: EAE_Tyson
Project Manager: Jim Hulbert

Reporting

Limit

MDL

Result

Reported:

06/29/2015 10:43

RPD

Limit

Notes

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Units

Level

Source

Result

%REC

%REC

Limits

Bromomethane 2-Butanone	ND			
2-Butanone		2.50	10.0 ug/Kg wet	U
	ND	2.50	10.0 ug/Kg wet	ī
Carbon disulfide	ND	1.25	5.00 ug/Kg wet	Ţ
Carbon tetrachloride	ND	1.25	5.00 ug/Kg wet	τ
Chlorobenzene	ND	1.25	5.00 ug/Kg wet	Ţ
Chloroethane	ND	2.50	10.0 ug/Kg wet	τ
Chloroform	ND	1.25	5.00 ug/Kg wet	Ţ
Chloromethane	ND	2.50	10.0 ug/Kg wet	τ
Cyclohexane	ND	1.25	5.00 ug/Kg wet	τ
Dibromochloromethane	ND	1.25	5.00 ug/Kg wet	Ţ
1,2-Dibromo-3-chloropropane	ND	2.50	10.0 ug/Kg wet	τ
1,2-Dibromoethane (EDB)	ND	1.25	5.00 ug/Kg wet	τ
1,2-Dichlorobenzene	ND	1.25	5.00 ug/Kg wet	τ
1,3-Dichlorobenzene	ND	1.25	5.00 ug/Kg wet	τ
1,4-Dichlorobenzene	ND	1.25	5.00 ug/Kg wet	τ
Dichlorodifluoromethane	ND	2.50	10.0 ug/Kg wet	τ
1,1-Dichloroethane	ND	1.25	5.00 ug/Kg wet	Ţ
1,2-Dichloroethane	ND	1.25	5.00 ug/Kg wet	τ
1,1-Dichloroethene	ND	1.25	5.00 ug/Kg wet	Ţ
cis-1,2-Dichloroethene	ND	1.25	5.00 ug/Kg wet	Ţ
trans-1,2-Dichloroethene	ND	1.25	5.00 ug/Kg wet	Ţ
1,2-Dichloropropane	ND	1.25	5.00 ug/Kg wet	τ
cis-1,3-Dichloropropene	ND	1.25	5.00 ug/Kg wet	Ţ
trans-1,3-Dichloropropene	ND	1.25	5.00 ug/Kg wet	Ţ
Ethylbenzene	ND	1.25	5.00 ug/Kg wet	Ţ
2-Hexanone	ND	2.50	10.0 ug/Kg wet	Ţ
Isopropylbenzene	ND	1.25	5.00 ug/Kg wet	τ
Methylene chloride	ND	2.50	10.0 ug/Kg wet	τ
Methyl Acetate	ND	2.50	10.0 ug/Kg wet	Ţ

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 77 of 109

Project: Tyson Chicken
Project Number: EAE_Tyson
Project Manager: Jim Hulbert

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Reported: 06/29/2015 10:43

RPD

%REC

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Spike

Source

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F17003											
Blank (5F17003-BLK1)				Prepa	ared & An	alyzed: 06	/17/2015				
4-Methyl-2-pentanone	ND	2.50	10.0	ug/Kg wet							1
Methyl t-Butyl Ether	ND	1.25	5.00	ug/Kg wet							1
Styrene	ND	1.25	5.00	ug/Kg wet							1
1,1,2,2-Tetrachloroethane	ND	1.25	5.00	ug/Kg wet							U
Tetrachloroethene	ND	1.25	5.00	ug/Kg wet							ī
Toluene	ND	1.25	5.00	ug/Kg wet							1
1,2,4-Trichlorobenzene	ND	1.25	5.00	ug/Kg wet							1
1,1,2-Trichloroethane	ND	1.25	5.00	ug/Kg wet							1
1,1,1-Trichloroethane	ND	1.25	5.00	ug/Kg wet							1
Trichloroethene	ND	1.25	5.00	ug/Kg wet							1
Trichlorofluoromethane	ND	2.50	10.0	ug/Kg wet							1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.50	10.0	ug/Kg wet							1
Vinyl chloride	ND	1.25		ug/Kg wet							1
m,p-Xylene	ND	2.50		ug/Kg wet							1
o-Xylene	ND	1.25		ug/Kg wet							1
Surrogate: Bromofluorobenzene	27.44			ug/Kg wet	30.00		91.5	85-120			
Surrogate: Dibromofluoromethane	28.69			ug/Kg wet	30.00		95.6	80-125			
Surrogate: 1,2-Dichloroethane-d4	27.92			ug/Kg wet	30.00		93.1	75-140			
Surrogate: Toluene-d8	27.13			ug/Kg wet	30.00		90.4	85-115			
LCS (5F17003-BS1)				Prepa	ared & An	alyzed: 06	/17/2015				
Acetone	185.4	5.00	20.0	ug/Kg wet	100.0		185	20-160			
Benzene	47.51	1.25	5.00	ug/Kg wet	50.00		95.0	75-125			
Bromodichloromethane	50.75	1.25	5.00	ug/Kg wet	50.00		102	70-130			
Bromoform	46.33	1.25	5.00	ug/Kg wet	50.00		92.7	55-135			
Bromomethane	52.63	2.50	10.0	ug/Kg wet	50.00		105	30-160			2
2-Butanone	134.4	2.50	10.0	ug/Kg wet	100.0		134	30-160			
Carbon disulfide	41.87	1.25	5.00	ug/Kg wet	50.00		83.7	45-160			
Carbon tetrachloride	45.36	1.25	5.00	ug/Kg wet	50.00		90.7	65-135			
Chlorobenzene	45.95	1.25	5.00	ug/Kg wet	50.00		91.9	75-125			
Chloroethane	44.87	2.50	10.0	ug/Kg wet	50.00		89.7	40-155			
Chloroform	45.08	1.25		ug/Kg wet	50.00		90.2	70-125			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

Page 79 of 109

%REC

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Reporting

Project: Tyson Chicken

			Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F17003											
LCS (5F17003-BS1)				Prepa	red & An	alyzed: 06/	17/2015				
Chloromethane	50.30	2.50	10.0	ug/Kg wet	50.00		101	50-130			
Cyclohexane	45.55	1.25	5.00	ug/Kg wet	50.00		91.1	65-140			
Dibromochloromethane	49.17	1.25	5.00	ug/Kg wet	50.00		98.3	65-130			
,2-Dibromo-3-chloropropane	49.21	2.50	10.0	ug/Kg wet	50.00		98.4	40-135			
1,2-Dibromoethane (EDB)	49.75	1.25	5.00	ug/Kg wet	50.00		99.5	70-125			
1,2-Dichlorobenzene	46.23	1.25	5.00	ug/Kg wet	50.00		92.5	75-120			
1,3-Dichlorobenzene	46.93	1.25	5.00	ug/Kg wet	50.00		93.9	70-125			
1,4-Dichlorobenzene	46.17	1.25	5.00	ug/Kg wet	50.00		92.3	70-125			
Dichlorodifluoromethane	50.06	2.50	10.0	ug/Kg wet	50.00		100	35-135			
1,1-Dichloroethane	44.95	1.25	5.00	ug/Kg wet	50.00		89.9	75-125			
1,2-Dichloroethane	48.61	1.25	5.00	ug/Kg wet	50.00		97.2	70-135			
1,1-Dichloroethene	45.33	1.25	5.00	ug/Kg wet	50.00		90.7	65-135			
cis-1,2-Dichloroethene	46.34	1.25	5.00	ug/Kg wet	50.00		92.7	65-125			
rans-1,2-Dichloroethene	47.13	1.25	5.00	ug/Kg wet	50.00		94.3	65-135			
,2-Dichloropropane	47.68	1.25	5.00	ug/Kg wet	50.00		95.4	70-120			
cis-1,3-Dichloropropene	53.49	1.25	5.00	ug/Kg wet	50.00		107	70-125			
rans-1,3-Dichloropropene	48.71	1.25	5.00	ug/Kg wet	50.00		97.4	65-125			
Ethylbenzene	47.47	1.25	5.00	ug/Kg wet	50.00		94.9	75-125			
2-Hexanone	117.9	2.50	10.0	ug/Kg wet	100.0		118	45-145			
sopropylbenzene	45.68	1.25	5.00	ug/Kg wet	50.00		91.4	75-130			
Methylene chloride	42.61	2.50	10.0	ug/Kg wet	50.00		85.2	55-140			
Methyl Acetate	43.13	2.50	10.0	ug/Kg wet	50.00		86.3	45-165			
Methylcyclohexane	47.99	1.25	5.00	ug/Kg wet	50.00		96.0	65-135			
4-Methyl-2-pentanone	102.1	2.50	10.0	ug/Kg wet	100.0		102	45-145			
Methyl t-Butyl Ether	47.82	1.25	5.00	ug/Kg wet	50.00		95.6	55-150			
Styrene	50.23	1.25	5.00	ug/Kg wet	50.00		100	75-125			
,1,2,2-Tetrachloroethane	55.00	1.25	5.00	ug/Kg wet	50.00		110	55-130			
Tetrachloroethene	45.70	1.25	5.00	ug/Kg wet	50.00		91.4	65-140			
Toluene	47.70	1.25	5.00	ug/Kg wet	50.00		95.4	70-125			
,2,4-Trichlorobenzene	32.54	1.25	5.00	ug/Kg wet	50.00		65.1	65-130			

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	MDL	Limit	Omts	Level	Result	/UKEC	Limits	KI D	Dillit	110103
Batch 5F17003											
LCS (5F17003-BS1)	47.90	1.25	5.00	Prepa ug/Kg wet	ared & Ar 50.00	nalyzed: 06		60-125			
1,1,2-Trichloroethane							95.8				
1,1,1-Trichloroethane	45.88	1.25	5.00	ug/Kg wet	50.00		91.8	70-135			
Trichloroethene	47.79	1.25	5.00	ug/Kg wet	50.00		95.6	75-125			
Trichlorofluoromethane	48.45	2.50	10.0	ug/Kg wet	50.00		96.9	25-185			
1,1,2-Trichloro-1,2,2-trifluoroethane	46.40	2.50	10.0	ug/Kg wet	50.00		92.8	20-185			
Vinyl chloride	44.17	1.25	5.00	ug/Kg wet	50.00		88.3	60-125			
m,p-Xylene	96.27	2.50	10.0	ug/Kg wet	100.0		96.3	80-125			
o-Xylene	45.42	1.25	5.00	ug/Kg wet	50.00		90.8	75-125			
Surrogate: Bromofluorobenzene	28.12			ug/Kg wet	30.00		93.7	85-120			
Surrogate: Dibromofluoromethane	28.00			ug/Kg wet	30.00		93.3	80-125			
Surrogate: 1,2-Dichloroethane-d4	29.53			ug/Kg wet	30.00		98.4	75-140			
Surrogate: Toluene-d8	27.84			ug/Kg wet	30.00		92.8	85-115			
Matrix Spike (5F17003-MS1)		Source: 150)6109-12RE	1 Prepa		nalyzed: 06	/17/2015				
Acetone	103.2	4.74	19.0	ug/Kg dry	94.89	25.12	82.3	20-160			
Benzene	45.57	1.19	4.74	ug/Kg dry	47.45	ND	96.0	75-125			
Bromodichloromethane	53.49	1.19	4.74	ug/Kg dry	47.45	ND	113	70-130			
Bromoform	48.81	1.19	4.74	ug/Kg dry	47.45	ND	103	55-135			
Bromomethane	37.79	2.37	9.49	ug/Kg dry	47.45	ND	79.7	30-160			
2-Butanone	105.9	2.37	9.49	ug/Kg dry	94.89	ND	112	30-160			
Carbon disulfide	43.00	1.19	4.74	ug/Kg dry	47.45	1.295	87.9	45-160			
Carbon tetrachloride	44.22	1.19	4.74	ug/Kg dry	47.45	ND	93.2	65-135			
Chlorobenzene	43.33	1.19	4.74	ug/Kg dry	47.45	ND	91.3	75-125			
Chloroethane	40.75	2.37	9.49	ug/Kg dry	47.45	ND	85.9	40-155			
Chloroform	44.70	1.19	4.74	ug/Kg dry	47.45	ND	94.2	70-125			
Chloromethane	46.00	2.37		ug/Kg dry	47.45	ND	97.0	50-130			
Cyclohexane	41.36	1.19		ug/Kg dry	47.45	ND	87.2	65-140			
Dibromochloromethane	50.72	1.19		ug/Kg dry	47.45	ND	107	65-130			
1,2-Dibromo-3-chloropropane	54.07	2.37		ug/Kg dry	47.45	ND	114	40-135			
1,2-Dibromoethane (EDB)	52.04	1.19		ug/Kg dry	47.45	ND	110	70-125			
1,2-Dichlorobenzene	42.78	1.19	4.74	ug/Kg dry	47.45	ND	90.2	75-120			
1,3-Dichlorobenzene	41.63	1.19	4.74	ug/Kg dry	47.45	ND	87.8	70-125			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

%REC

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Spike

Source

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F17003											
Matrix Spike (5F17003-MS1)		Source: 1506	109-12RE1	Prepa	ared & An	nalyzed: 06	/17/2015				
1,4-Dichlorobenzene	41.49	1.19	4.74	ug/Kg dry	47.45	ND	87.5	70-125			
Dichlorodifluoromethane	35.11	2.37	9.49	ug/Kg dry	47.45	ND	74.0	35-135			
1,1-Dichloroethane	43.97	1.19	4.74	ug/Kg dry	47.45	ND	92.7	75-125			
1,2-Dichloroethane	51.75	1.19	4.74	ug/Kg dry	47.45	ND	109	70-135			
1,1-Dichloroethene	44.73	1.19	4.74	ug/Kg dry	47.45	ND	94.3	65-135			
cis-1,2-Dichloroethene	45.43	1.19	4.74	ug/Kg dry	47.45	ND	95.7	65-125			
trans-1,2-Dichloroethene	44.79	1.19	4.74	ug/Kg dry	47.45	ND	94.4	65-135			
1,2-Dichloropropane	47.26	1.19	4.74	ug/Kg dry	47.45	ND	99.6	70-120			
cis-1,3-Dichloropropene	53.14	1.19	4.74	ug/Kg dry	47.45	ND	112	70-125			
trans-1,3-Dichloropropene	49.07	1.19	4.74	ug/Kg dry	47.45	ND	103	65-125			
Ethylbenzene	43.39	1.19	4.74	ug/Kg dry	47.45	ND	91.5	75-125			
2-Hexanone	106.8	2.37	9.49	ug/Kg dry	94.89	ND	113	45-145			
Isopropylbenzene	41.10	1.19	4.74	ug/Kg dry	47.45	ND	86.6	75-130			
Methylene chloride	42.44	2.37	9.49	ug/Kg dry	47.45	ND	89.4	55-140			
Methyl Acetate	51.17	2.37	9.49	ug/Kg dry	47.45	ND	108	45-165			
Methylcyclohexane	42.28	1.19	4.74	ug/Kg dry	47.45	ND	89.1	65-135			
4-Methyl-2-pentanone	114.0	2.37	9.49	ug/Kg dry	94.89	ND	120	45-145			
Methyl t-Butyl Ether	57.96	1.19	4.74	ug/Kg dry	47.45	ND	122	55-150			
Styrene	46.90	1.19	4.74	ug/Kg dry	47.45	ND	98.9	75-125			
1,1,2,2-Tetrachloroethane	65.91	1.19	4.74	ug/Kg dry	47.45	ND	139	55-130			*]
Tetrachloroethene	40.33	1.19	4.74	ug/Kg dry	47.45	ND	85.0	65-140			
Toluene	43.22	1.19	4.74	ug/Kg dry	47.45	ND	91.1	70-125			
1,2,4-Trichlorobenzene	29.40	1.19	4.74	ug/Kg dry	47.45	ND	62.0	65-130			
1,1,2-Trichloroethane	49.96	1.19	4.74	ug/Kg dry	47.45	ND	105	60-125			
1,1,1-Trichloroethane	44.27	1.19	4.74	ug/Kg dry	47.45	ND	93.3	70-135			
Trichloroethene	44.35	1.19	4.74	ug/Kg dry	47.45	ND	93.5	75-125			
Trichlorofluoromethane	49.57	2.37	9.49	ug/Kg dry	47.45	ND	104	25-185			
1,1,2-Trichloro-1,2,2-trifluoroethane	44.69	2.37	9.49	ug/Kg dry	47.45	ND	94.2	20-185			
Vinyl chloride	44.42	1.19	4.74	ug/Kg dry	47.45	ND	93.6	60-125			
m,p-Xylene	87.81	2.37	9.49	ug/Kg dry	94.89	ND	92.5	80-125			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 10:43

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F17003											
Matrix Spike (5F17003-MS1)		Source: 1500	6109-12RE1	Prepa	ared & Ar	nalyzed: 06	17/2015				
o-Xylene	41.54	1.19	4.74 ı	ug/Kg dry	47.45	ND	87.6	75-125			
Surrogate: Bromofluorobenzene	27.01		1	ug/Kg dry	28.47		94.9	85-120			
Surrogate: Dibromofluoromethane	29.20			ug/Kg dry	28.47		103	80-125			
Surrogate: 1,2-Dichloroethane-d4	28.76			ug/Kg dry	28.47		101	75-140			
Surrogate: Toluene-d8	26.00		1	ug/Kg dry	28.47		91.3	85-115			
Matrix Spike Dup (5F17003-MSD1)		Source: 1500				nalyzed: 06		-0.450			
Acetone	160.4	4.96	19.8 ι	ug/Kg dry	99.11	25.12	137	20-160	43.4	30	Q
Benzene	60.70	1.24	4.96 ı	ug/Kg dry	49.55	ND	122	75-125	28.5	30	
Bromodichloromethane	70.69	1.24	4.96 ı	ug/Kg dry	49.55	ND	143	70-130	27.7	30	*
Bromoform	72.38	1.24	4.96 u	ug/Kg dry	49.55	ND	146	55-135	38.9	30	*
Bromomethane	47.97	2.48	9.91 u	ug/Kg dry	49.55	ND	96.8	30-160	23.7	30	X
2-Butanone	165.3	2.48	9.91 u	ug/Kg dry	99.11	ND	167	30-160	43.8	30	*
Carbon disulfide	51.46	1.24	4.96 u	ug/Kg dry	49.55	1.295	101	45-160	17.9	30	
Carbon tetrachloride	59.47	1.24	4.96 u	ug/Kg dry	49.55	ND	120	65-135	29.4	30	
Chlorobenzene	56.98	1.24	4.96 u	ug/Kg dry	49.55	ND	115	75-125	27.2	30	
Chloroethane	51.22	2.48	9.91 u	ug/Kg dry	49.55	ND	103	40-155	22.8	30	
Chloroform	59.83	1.24	4.96 u	ug/Kg dry	49.55	ND	121	70-125	29.0	30	
Chloromethane	54.20	2.48	9.91 ı	ug/Kg dry	49.55	ND	109	50-130	16.4	30	
Cyclohexane	54.51	1.24	4.96 ı	ug/Kg dry	49.55	ND	110	65-140	27.4	30	
Dibromochloromethane	71.95	1.24	4.96 ı	ug/Kg dry	49.55	ND	145	65-130	34.6	30	*
1,2-Dibromo-3-chloropropane	83.64	2.48	9.91 ı	ug/Kg dry	49.55	ND	169	40-135	43.0	30	*
1,2-Dibromoethane (EDB)	74.76	1.24	4.96 ı	ug/Kg dry	49.55	ND	151	70-125	35.8	30	*
1,2-Dichlorobenzene	55.55	1.24	4.96 ı	ug/Kg dry	49.55	ND	112	75-120	26.0	30	
1,3-Dichlorobenzene	53.23	1.24	4.96 ı	ug/Kg dry	49.55	ND	107	70-125	24.4	30	
1,4-Dichlorobenzene	52.86	1.24	4.96 ı	ug/Kg dry	49.55	ND	107	70-125	24.1	30	
Dichlorodifluoromethane	40.48	2.48	9.91 ı	ug/Kg dry	49.55	ND	81.7	35-135	14.2	30	
1,1-Dichloroethane	57.46	1.24	4.96 ı	ug/Kg dry	49.55	ND	116	75-125	26.6	30	
1,2-Dichloroethane	70.71	1.24	4.96 ı	ug/Kg dry	49.55	ND	143	70-135	31.0	30	*
1,1-Dichloroethene	56.87	1.24	4.96 ı	ug/Kg dry	49.55	ND	115	65-135	23.9	30	
cis-1,2-Dichloroethene	60.05	1.24	4.96 ı	ug/Kg dry	49.55	ND	121	65-125	27.7	30	
trans-1,2-Dichloroethene	59.19	1.24	4.96 u	ug/Kg dry	49.55	ND	119	65-135	27.7	30	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 10:43

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F17003											
Matrix Spike Dup (5F17003-MSD1)		Source: 1506	109-12RE	l Prepa	ared & Ar	nalyzed: 06	/17/2015				
1,2-Dichloropropane	63.59	1.24	4.96	ug/Kg dry	49.55	ND	128	70-120	29.5	30	*
cis-1,3-Dichloropropene	71.87	1.24	4.96	ug/Kg dry	49.55	ND	145	70-125	30.0	30	*
trans-1,3-Dichloropropene	68.18	1.24	4.96	ug/Kg dry	49.55	ND	138	65-125	32.6	30	*
Ethylbenzene	57.36	1.24	4.96	ug/Kg dry	49.55	ND	116	75-125	27.7	30	
2-Hexanone	168.3	2.48	9.91	ug/Kg dry	99.11	ND	170	45-145	44.7	30	*
Isopropylbenzene	55.97	1.24	4.96	ug/Kg dry	49.55	ND	113	75-130	30.6	30	
Methylene chloride	55.41	2.48	9.91	ug/Kg dry	49.55	ND	112	55-140	26.5	30	
Methyl Acetate	64.01	2.48	9.91	ug/Kg dry	49.55	ND	129	45-165	22.3	30	
Methylcyclohexane	57.81	1.24	4.96	ug/Kg dry	49.55	ND	117	65-135	31.0	30	
4-Methyl-2-pentanone	172.1	2.48	9.91	ug/Kg dry	99.11	ND	174	45-145	40.6	30	*
Methyl t-Butyl Ether	74.81	1.24	4.96	ug/Kg dry	49.55	ND	151	55-150	25.4	30	*
Styrene	61.69	1.24	4.96	ug/Kg dry	49.55	ND	124	75-125	27.2	30	
1,1,2,2-Tetrachloroethane	99.16	1.24	4.96	ug/Kg dry	49.55	ND	200	55-130	40.3	30	*X
Tetrachloroethene	54.75	1.24	4.96	ug/Kg dry	49.55	ND	110	65-140	30.3	30	
Toluene	57.21	1.24	4.96	ug/Kg dry	49.55	ND	115	70-125	27.9	30	
1,2,4-Trichlorobenzene	37.86	1.24	4.96	ug/Kg dry	49.55	ND	76.4	65-130	25.2	30	
1,1,2-Trichloroethane	69.44	1.24	4.96	ug/Kg dry	49.55	ND	140	60-125	32.6	30	*
1,1,1-Trichloroethane	59.03	1.24	4.96	ug/Kg dry	49.55	ND	119	70-135	28.6	30	
Trichloroethene	56.62	1.24	4.96	ug/Kg dry	49.55	ND	114	75-125	24.3	30	
Trichlorofluoromethane	61.96	2.48	9.91	ug/Kg dry	49.55	ND	125	25-185	22.2	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	58.03	2.48	9.91	ug/Kg dry	49.55	ND	117	20-185	26.0	30	
Vinyl chloride	53.50	1.24	4.96	ug/Kg dry	49.55	ND	108	60-125	18.5	30	
m,p-Xylene	114.2	2.48	9.91	ug/Kg dry	99.11	ND	115	80-125	26.1	30	
o-Xylene	55.50	1.24	4.96	ug/Kg dry	49.55	ND	112	75-125	28.8	30	
Surrogate: Bromofluorobenzene	29.13			ug/Kg dry	29.73		98.0	85-120			
Surrogate: Dibromofluoromethane	30.48			ug/Kg dry	29.73		103	80-125			
Surrogate: 1,2-Dichloroethane-d4	29.19			ug/Kg dry	29.73		98.2	75-140			
Surrogate: Toluene-d8	27.35			ug/Kg dry	29.73		92.0	85-115			

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 83 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

Diesel Range Organics by GC - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F16703											
Blank (5F16703-BLK1)				Prepa	red: 06/1	6/2015 An	alyzed: 06	/22/2015			
Diesel Range Organics (C10-C28)	ND	6.70	13.3	mg/Kg wet							1
Surrogate: o-Terphenyl	1.118			mg/Kg wet	1.333		83.8	35-140			
LCS (5F16703-BS1)				Prepa	red: 06/1	6/2015 An	alyzed: 06	/22/2015			
Diesel Range Organics (C10-C28)	50.97	6.70	13.3	mg/Kg wet	66.67		76.5	50-150			
Surrogate: o-Terphenyl	1.156			mg/Kg wet	1.333		86.7	35-140			
Matrix Spike (5F16703-MS1)		Source: 150	06109-12	Prepa	red: 06/1	6/2015 Ana	alyzed: 06	/22/2015			
Diesel Range Organics (C10-C28)	61.53	8.07	16.0	mg/Kg dry	80.34	13.82	59.4	50-150			
Surrogate: o-Terphenyl	1.254			mg/Kg dry	1.607		78.0	35-140			
Matrix Spike Dup (5F16703-MSD1)		Source: 150	06109-12	Prepa	red: 06/1	6/2015 Ana	alyzed: 06	/22/2015			
Diesel Range Organics (C10-C28)	66.43	8.07	16.0	mg/Kg dry	80.34	13.82	65.5	50-150	7.66	30	
Surrogate: o-Terphenyl	1.273			mg/Kg dry	1.607		79.3	35-140			

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 84 of 109

EA Engineering, Science, and Technology, Inc.

Project: Tyson Chicken

225 Schilling Circle, Suite 400Project Number: EAE_TysonReported:Hunt Valley MD, 21031Project Manager: Jim Hulbert06/29/2015 10:43

Organochlorine Pesticides and PCBs by GC - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 5F16704				
Blank (5F16704-BLK1)			Prepared: 06/16/2015 Analyze	d: 06/20/2015
4,4'-DDE	ND	0.170	0.670 ug/Kg wet	U
4,4'-DDE [2C]	ND	0.170	0.670 ug/Kg wet	U
4,4'-DDD	ND	0.170	0.670 ug/Kg wet	U
4,4'-DDD [2C]	ND	0.170	0.670 ug/Kg wet	U
4,4'-DDT	ND	0.170	0.670 ug/Kg wet	U
4,4'-DDT [2C]	ND	0.170	0.670 ug/Kg wet	U
Aldrin	ND	0.110	0.670 ug/Kg wet	U
Aldrin [2C]	ND	0.110	0.670 ug/Kg wet	U
alpha-BHC	ND	0.110	0.670 ug/Kg wet	U
alpha-BHC [2C]	0.121	0.110	0.670 ug/Kg wet	J
alpha-Chlordane	ND	0.110	0.670 ug/Kg wet	U
alpha-Chlordane [2C]	ND	0.110	0.670 ug/Kg wet	U
beta-BHC	0.771	0.110	0.670 ug/Kg wet	
beta-BHC [2C]	ND	0.110	0.670 ug/Kg wet	U
delta-BHC	0.173	0.110	0.670 ug/Kg wet	J
delta-BHC [2C]	ND	0.110	0.670 ug/Kg wet	U
Dieldrin	ND	0.170	0.670 ug/Kg wet	U
Dieldrin [2C]	ND	0.170	0.670 ug/Kg wet	U
Endosulfan I	ND	0.110	0.670 ug/Kg wet	U
Endosulfan I [2C]	ND	0.110	0.670 ug/Kg wet	U
Endosulfan II	ND	0.170	0.670 ug/Kg wet	U
Endosulfan II [2C]	ND	0.170	0.670 ug/Kg wet	U
Endosulfan sulfate	ND	0.170	0.670 ug/Kg wet	U
Endosulfan sulfate [2C]	ND	0.170	0.670 ug/Kg wet	U
Endrin	ND	0.170	0.670 ug/Kg wet	UX
Endrin [2C]	ND	0.170	0.670 ug/Kg wet	U
Endrin aldehyde	ND	0.170	0.670 ug/Kg wet	U
Endrin aldehyde [2C]	ND	0.170	0.670 ug/Kg wet	U
Endrin ketone	ND	0.170	0.670 ug/Kg wet	U
Endrin ketone [2C]	ND	0.170	0.670 ug/Kg wet	U

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 85 of 109

Project: Tyson Chicken Project Number: EAE_Tyson Project Manager: Jim Hulbert

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Reported: 06/29/2015 10:43

RPD

%REC

Source

Organochlorine Pesticides and PCBs by GC - Quality Control **Empirical Laboratories, LLC**

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F16704											
Blank (5F16704-BLK1)				Prepa	ared: 06/1	6/2015 An	alyzed: 06/	20/2015			
gamma-BHC (Lindane)	ND	0.110	0.670	ug/Kg wet							Ţ
gamma-BHC (Lindane) [2C]	ND	0.110	0.670	ug/Kg wet							J
gamma-Chlordane	4.48	0.110	0.670	ug/Kg wet							N
gamma-Chlordane [2C]	0.204	0.110	0.670	ug/Kg wet							JM
Heptachlor	ND	0.110	0.670	ug/Kg wet							J
Heptachlor [2C]	ND	0.110	0.670	ug/Kg wet							UX
Heptachlor epoxide	ND	0.110	0.670	ug/Kg wet							Ţ
Heptachlor epoxide [2C]	ND	0.110	0.670	ug/Kg wet							τ
Methoxychlor	ND	0.110	0.670	ug/Kg wet							Ţ
Methoxychlor [2C]	ND	0.110	0.670	ug/Kg wet							Ţ
Chlordane (n.o.s.)	ND	0.570	3.33	ug/Kg wet							Ţ
Chlordane (n.o.s.) [2C]	ND	0.570	3.33	ug/Kg wet							Ţ
Toxaphene	ND	11.0	33.0	ug/Kg wet							Į
Toxaphene [2C]	ND	11.0	33.0	ug/Kg wet							Ţ
Surrogate: Tetrachloro-m-xylene	13.02			ug/Kg wet	16.67		78.1	70-125			
Surrogate: Tetrachloro-m-xylene [2C]	13.71			ug/Kg wet	16.67		82.3	70-125			
Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C]	15.45 15.91			ug/Kg wet ug/Kg wet	16.67 16.67		92.7 95.4	55-130 55-130			
	13.71					6/2015 4					
LCS (5F16704-BS1) 4,4'-DDE	27.62	0.170	0.670	ug/Kg wet	33.33	6/2015 Ana	82.8	70-125			
4,4'-DDE [2C]	29.21	0.170		ug/Kg wet	33.33		87.6	70-125			
4,4'-DDD [2C]	27.66	0.170		ug/Kg wet	33.33		83.0	30-135			
4,4'-DDD [2C]	29.49	0.170		ug/Kg wet	33.33		88.5	30-135			
4,4'-DDT	30.25	0.170		ug/Kg wet	33.33		90.7	45-140			
4,4'-DDT [2C]	30.54	0.170		ug/Kg wet	33.33		91.6	45-140			
Aldrin	24.93	0.110		ug/Kg wet	33.33		74.8	45-140			
Aldrin [2C]	27.11	0.110		ug/Kg wet	33.33		81.3	45-140			
alpha-BHC	24.39	0.110	0.670	ug/Kg wet	33.33		73.2	60-125			
alpha-BHC [2C]	26.60	0.110	0.670	ug/Kg wet	33.33		79.8	60-125			F
alpha-Chlordane	25.24	0.110	0.670	ug/Kg wet	33.33		75.7	65-120			
alpha-Chlordane [2C]	25.57	0.110	0.670	ug/Kg wet	33.33		76.7	65-120			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Project Number: EAE_Tyson
Project Manager: Jim Hulbert

Reporting

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 **Reported:** 06/29/2015 10:43

RPD

%REC

Organochlorine Pesticides and PCBs by GC - Quality Control Empirical Laboratories, LLC

Spike

Source

		r	Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F16704											
LCS (5F16704-BS1)				Prepa	red: 06/16/2	2015 Ana	lyzed: 06/	20/2015			
beta-BHC	24.20	0.110	0.670	ug/Kg wet	33.33		72.6	60-125			
beta-BHC [2C]	26.56	0.110	0.670	ug/Kg wet	33.33		79.7	60-125			
delta-BHC	25.95	0.110	0.670	ug/Kg wet	33.33		77.9	55-130			
delta-BHC [2C]	27.84	0.110	0.670	ug/Kg wet	33.33		83.5	55-130			
Dieldrin	26.38	0.170	0.670	ug/Kg wet	33.33		79.1	65-125			
Dieldrin [2C]	28.04	0.170	0.670	ug/Kg wet	33.33		84.1	65-125			
Endosulfan I	26.11	0.110	0.670	ug/Kg wet	33.33		78.3	15-135			
Endosulfan I [2C]	27.13	0.110	0.670	ug/Kg wet	33.33		81.4	15-135			
Endosulfan II	26.57	0.170	0.670	ug/Kg wet	33.33		79.7	35-140			
Endosulfan II [2C]	27.99	0.170	0.670	ug/Kg wet	33.33		84.0	35-140			
Endosulfan sulfate	27.29	0.170	0.670	ug/Kg wet	33.33		81.9	60-135			
Endosulfan sulfate [2C]	27.56	0.170	0.670	ug/Kg wet	33.33		82.7	60-135			
Endrin	30.15	0.170	0.670	ug/Kg wet	33.33		90.4	60-135			
Endrin [2C]	30.36	0.170	0.670	ug/Kg wet	33.33		91.1	60-135			
Endrin aldehyde	25.12	0.170	0.670	ug/Kg wet	33.33		75.3	35-145			
Endrin aldehyde [2C]	24.80	0.170	0.670	ug/Kg wet	33.33		74.4	35-145			
Endrin ketone	26.06	0.170	0.670	ug/Kg wet	33.33		78.2	65-135			
Endrin ketone [2C]	26.09	0.170	0.670	ug/Kg wet	33.33		78.3	65-135			
gamma-BHC (Lindane)	25.07	0.110	0.670	ug/Kg wet	33.33		75.2	60-125			
gamma-BHC (Lindane) [2C]	27.62	0.110	0.670	ug/Kg wet	33.33		82.9	60-125			
gamma-Chlordane	28.64	0.110	0.670	ug/Kg wet	33.33		85.9	65-125			
gamma-Chlordane [2C]	27.59	0.110	0.670	ug/Kg wet	33.33		82.8	65-125			
Heptachlor	28.36	0.110	0.670	ug/Kg wet	33.33		85.1	50-140			
Heptachlor [2C]	30.48	0.110	0.670	ug/Kg wet	33.33		91.4	50-140			
Heptachlor epoxide	26.07	0.110	0.670	ug/Kg wet	33.33		78.2	65-130			
Heptachlor epoxide [2C]	27.87	0.110	0.670	ug/Kg wet	33.33		83.6	65-130			
Methoxychlor	28.64	0.110	0.670	ug/Kg wet	33.33		85.9	55-145			
Methoxychlor [2C]	27.77	0.110	0.670	ug/Kg wet	33.33		83.3	55-145			
Surrogate: Tetrachloro-m-xylene	11.69			ug/Kg wet	16.67		70.2	70-125			
Surrogate: Tetrachloro-m-xylene [2C]	12.35			ug/Kg wet	16.67		74.1	70-125			
Surrogate: Decachlorobiphenyl	13.43			ug/Kg wet	16.67		80.6	55-130			
EMPIRICAL LABORATORIES, LLC	Work Order:	1506109	Re	port Date:	06/29/20)15				Dogo	87 of 10

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert Reported:

06/29/2015 10:43

Organochlorine Pesticides and PCBs by GC - Quality Control

Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5F16704

LCS (5F16704-BS1) Prepared: 06/16/2015 Analyzed: 06/20/2015

Surrogate: Decachlorobiphenyl [2C] 14.03 ug/Kg wet 16.67 84.2 55-130

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 88 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Empirical Laboratories, LLC

Source

%REC

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
Blank (5F12003-BLK1)				Prepa	ared: 06/1	5/2015 Ana	alyzed: 06/	16/2015			
Acenaphthene	ND	83.3	333	ug/Kg wet							
Acenaphthylene	ND	83.3	333	ug/Kg wet							
Acetophenone	ND	83.3	333	ug/Kg wet							
Anthracene	ND	83.3	333	ug/Kg wet							
Atrazine	ND	83.3	333	ug/Kg wet							
Benzaldehyde	ND	83.3	333	ug/Kg wet							
Benzo(a)anthracene	ND	83.3	333	ug/Kg wet							
Benzo(a)pyrene	ND	83.3	333	ug/Kg wet							
Benzo(b)fluoranthene	ND	83.3	333	ug/Kg wet							
Benzo(g,h,i)perylene	ND	83.3	333	ug/Kg wet							
Benzo(k)fluoranthene	ND	83.3	333	ug/Kg wet							
1,1-Biphenyl	ND	83.3	333	ug/Kg wet							
4-Bromophenyl-phenylether	ND	83.3	333	ug/Kg wet							
Butylbenzylphthalate	ND	83.3	333	ug/Kg wet							
Caprolactam	ND	83.3	333	ug/Kg wet							
Carbazole	ND	83.3	333	ug/Kg wet							
4-Chloro-3-methylphenol	ND	83.3	333	ug/Kg wet							
4-Chloroaniline	ND	83.3	333	ug/Kg wet							
Bis(2-chloroethoxy)methane	ND	83.3	333	ug/Kg wet							
Bis(2-chloroethyl)ether	ND	83.3	333	ug/Kg wet							
2,2'-Oxybis-1-chloropropane	ND	83.3	333	ug/Kg wet							
2-Chloronaphthalene	ND	83.3	333	ug/Kg wet							
2-Chlorophenol	ND	83.3	333	ug/Kg wet							
4-Chlorophenyl phenyl ether	ND	83.3	333	ug/Kg wet							
Chrysene	ND	83.3	333	ug/Kg wet							
Dibenz(a,h)anthracene	ND	83.3	333	ug/Kg wet							
Dibenzofuran	ND	83.3	333	ug/Kg wet							
Di-n-butylphthalate	ND	83.3	333	ug/Kg wet							
3,3'-Dichlorobenzidine	ND	83.3	333	ug/Kg wet							
2,4-Dichlorophenol	ND	83.3	333	ug/Kg wet							

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Report Date: 06/29/2015

Page 89 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert **Reported:** 06/29/2015 10:43

RPD

%REC

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control$

Empirical Laboratories, LLC

Reporting

			Reporting		Spike	Source		/OKEC		KrD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
Blank (5F12003-BLK1)				Prepa	red: 06/1	5/2015 Ana	alyzed: 06/	16/2015			
Diethylphthalate	ND	83.3	333	ug/Kg wet							
,4-Dimethylphenol	ND	333	1330	ug/Kg wet							
Dimethyl phthalate	ND	83.3	333	ug/Kg wet							
,6-Dinitro-2-methylphenol	ND	833	3330	ug/Kg wet							
,4-Dinitrophenol	ND	833	3330	ug/Kg wet							
,4-Dinitrotoluene	ND	83.3	333	ug/Kg wet							
,6-Dinitrotoluene	ND	83.3	333	ug/Kg wet							
Di-n-octylphthalate	ND	83.3	333	ug/Kg wet							
Bis(2-ethylhexyl)phthalate	ND	83.3	333	ug/Kg wet							
Fluoranthene	ND	83.3	333	ug/Kg wet							
luorene	ND	83.3	333	ug/Kg wet							
Hexachlorobenzene	ND	83.3	333	ug/Kg wet							
Hexachlorobutadiene	ND	83.3	333	ug/Kg wet							
Hexachlorocyclopentadiene	ND	83.3	333	ug/Kg wet							
Hexachloroethane	ND	83.3	333	ug/Kg wet							
ndeno(1,2,3-cd)pyrene	ND	83.3	333	ug/Kg wet							
sophorone	ND	83.3	333	ug/Kg wet							
-Methylnaphthalene	ND	83.3	333	ug/Kg wet							
-Methylphenol	ND	83.3	333	ug/Kg wet							
-Methylphenol	ND	83.3	333	ug/Kg wet							
Naphthalene	ND	83.3	333	ug/Kg wet							
-Nitroaniline	ND	333	1330	ug/Kg wet							
-Nitroaniline	ND	333	1330	ug/Kg wet							
-Nitroaniline	ND	333	1330	ug/Kg wet							
Nitrobenzene	ND	83.3	333	ug/Kg wet							
-Nitrophenol	ND	333	1330	ug/Kg wet							
-Nitrophenol	ND	83.3	333	ug/Kg wet							
N-Nitrosodiphenylamine	ND	83.3	333	ug/Kg wet							
N-Nitroso-di-n-propylamine	ND	83.3	333	ug/Kg wet							

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

%REC

Source

Semivolatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
Blank (5F12003-BLK1)				Prepa	red: 06/15	5/2015 Ana	ılyzed: 06/	16/2015			
Phenanthrene	ND	83.3	333	ug/Kg wet							Ţ
Phenol	ND	83.3	333	ug/Kg wet							Ţ
Pyrene	ND	83.3	333	ug/Kg wet							Ţ
2,4,6-Trichlorophenol	ND	83.3	333	ug/Kg wet							τ
2,4,5-Trichlorophenol	ND	83.3	333	ug/Kg wet							Ţ
Surrogate: 2-Fluorobiphenyl	2787			ug/Kg wet	3333		83.6	45-105			
Surrogate: 2-Fluorophenol	4877			ug/Kg wet	6667		73.2	35-105			
Surrogate: Nitrobenzene-d5	2511			ug/Kg wet	3333		75.3	35-100			
Surrogate: Phenol-d6	5072			ug/Kg wet	6667		76.1	40-100			
Surrogate: Terphenyl-d14	2584			ug/Kg wet	3333		77.5	30-125			
Surrogate: 2,4,6-Tribromophenol	6706			ug/Kg wet	6667		101	35-125			2
LCS (5F12003-BS1)				Prepa	red: 06/15	5/2015 Ana	lyzed: 06/	16/2015			
Acenaphthene	3034	83.3	333	ug/Kg wet	3333		91.0	45-110			
Acenaphthylene	2941	83.3	333	ug/Kg wet	3333		88.2	45-105			
Acetophenone	2724	83.3	333	ug/Kg wet	3333		81.7	35-110			
Anthracene	2934	83.3	333	ug/Kg wet	3333		88.0	55-105			
Atrazine	3067	83.3	333	ug/Kg wet	3333		92.0	55-105			
Benzaldehyde	2493	83.3	333	ug/Kg wet	3333		74.8	10-160			
Benzo(a)anthracene	2969	83.3	333	ug/Kg wet	3333		89.1	50-110			
Benzo(a)pyrene	2933	83.3	333	ug/Kg wet	3333		88.0	50-110			
Benzo(b)fluoranthene	3130	83.3	333	ug/Kg wet	3333		93.9	45-115			
Benzo(g,h,i)perylene	3102	83.3	333	ug/Kg wet	3333		93.1	40-125			
Benzo(k)fluoranthene	2936	83.3	333	ug/Kg wet	3333		88.1	45-125			
1,1-Biphenyl	2847	83.3	333	ug/Kg wet	3333		85.4	45-110			
4-Bromophenyl-phenylether	3212	83.3	333	ug/Kg wet	3333		96.4	45-115			
Butylbenzylphthalate	2867	83.3	333	ug/Kg wet	3333		86.0	50-125			
Caprolactam	3059	83.3	333	ug/Kg wet	3333		91.8	50-110			
Carbazole	2885	83.3	333	ug/Kg wet	3333		86.6	45-115			
4-Chloro-3-methylphenol	6139	83.3	333	ug/Kg wet	6667		92.1	45-115			
4-Chloroaniline	2492	83.3	333	ug/Kg wet	3333		74.7	10-95			
Bis(2-chloroethoxy)methane	2809	83.3	333	ug/Kg wet	3333		84.3	45-110			
Bis(2-chloroethyl)ether	2668	83.3	333	ug/Kg wet	3333		80.0	40-105			
EMPIRICAL LABORATORIES, LLC	Work Order:	1506109	Rep	oort Date:	06/29/2	2015				Page	91 of 10

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

%REC

Source

Semivolatile Organic Compounds by GC/MS - Quality Control **Empirical Laboratories, LLC**

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
LCS (5F12003-BS1)				Prepa	red: 06/1	5/2015 Ana	alyzed: 06/	16/2015			
2,2'-Oxybis-1-chloropropane	2517	83.3	333	ug/Kg wet	3333		75.5	20-115			
2-Chloronaphthalene	2867	83.3	333	ug/Kg wet	3333		86.0	45-105			
2-Chlorophenol	5586	83.3	333	ug/Kg wet	6667		83.8	45-105			
4-Chlorophenyl phenyl ether	3102	83.3	333	ug/Kg wet	3333		93.1	45-110			
Chrysene	2995	83.3	333	ug/Kg wet	3333		89.8	55-110			
Dibenz(a,h)anthracene	3209	83.3	333	ug/Kg wet	3333		96.3	40-125			
Dibenzofuran	2987	83.3	333	ug/Kg wet	3333		89.6	50-105			
Di-n-butylphthalate	2989	83.3	333	ug/Kg wet	3333		89.7	55-110			
3,3'-Dichlorobenzidine	2757	83.3	333	ug/Kg wet	3333		82.7	19-130			
2,4-Dichlorophenol	5898	83.3	333	ug/Kg wet	6667		88.5	45-110			
Diethylphthalate	3082	83.3	333	ug/Kg wet	3333		92.4	50-115			
2,4-Dimethylphenol	6078	333	1330	ug/Kg wet	6667		91.2	30-105			
Dimethyl phthalate	3133	83.3	333	ug/Kg wet	3333		94.0	50-110			
4,6-Dinitro-2-methylphenol	6403	833	3330	ug/Kg wet	6667		96.0	30-135			
2,4-Dinitrophenol	6125	833	3330	ug/Kg wet	6667		91.9	15-130			
2,4-Dinitrotoluene	3101	83.3	333	ug/Kg wet	3333		93.0	50-115			
2,6-Dinitrotoluene	2939	83.3	333	ug/Kg wet	3333		88.2	50-110			
Di-n-octylphthalate	2869	83.3	333	ug/Kg wet	3333		86.1	40-130			
Bis(2-ethylhexyl)phthalate	2905	83.3	333	ug/Kg wet	3333		87.2	45-125			
Fluoranthene	2976	83.3	333	ug/Kg wet	3333		89.3	55-115			
Fluorene	2994	83.3	333	ug/Kg wet	3333		89.8	50-110			
Hexachlorobenzene	3130	83.3	333	ug/Kg wet	3333		93.9	45-120			
Hexachlorobutadiene	3150	83.3	333	ug/Kg wet	3333		94.5	30-110			
Hexachlorocyclopentadiene	2113	83.3	333	ug/Kg wet	3333		63.4	10-110			
Hexachloroethane	2500	83.3	333	ug/Kg wet	3333		75.0	35-110			
ndeno(1,2,3-cd)pyrene	2933	83.3	333	ug/Kg wet	3333		88.0	40-120			
sophorone	2493	83.3	333	ug/Kg wet	3333		74.8	45-110			
2-Methylnaphthalene	2666	83.3	333	ug/Kg wet	3333		80.0	40-110			
2-Methylphenol	5687	83.3		ug/Kg wet	6667		85.3	40-105			
-Methylphenol	5862	83.3		ug/Kg wet	6667		87.9	40-105			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

RPD

%REC

Semivolatile Organic Compounds by GC/MS - Quality Control

Empirical Lab	oratories,	LLC	7
---------------	------------	-----	---

Spike

Source

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
LCS (5F12003-BS1)				Prepa	ared: 06/1	5/2015 Ana	alyzed: 06/	16/2015			
Naphthalene	2760	83.3	333	ug/Kg wet	3333		82.8	40-105			
4-Nitroaniline	3074	333	1330	ug/Kg wet	3333		92.2	35-115			
3-Nitroaniline	2666	333	1330	ug/Kg wet	3333		80.0	25-110			
2-Nitroaniline	2981	333	1330	ug/Kg wet	3333		89.4	45-120			
Nitrobenzene	2596	83.3	333	ug/Kg wet	3333		77.9	40-115			
4-Nitrophenol	6602	333	1330	ug/Kg wet	6667		99.0	15-140			
2-Nitrophenol	5679	83.3	333	ug/Kg wet	6667		85.2	40-110			
N-Nitrosodiphenylamine	2547	83.3	333	ug/Kg wet	3333		76.4	50-115			
N-Nitroso-di-n-propylamine	2839	83.3	333	ug/Kg wet	3333		85.2	40-115			
Pentachlorophenol	6857	333	1330	ug/Kg wet	6667		103	25-120			Е
Phenanthrene	2965	83.3		ug/Kg wet	3333		89.0	50-110			
Phenol	5219	83.3		ug/Kg wet	6667		78.3	40-100			
Pyrene	2657	83.3	333	ug/Kg wet	3333		79.7	45-125			
2,4,6-Trichlorophenol	6330	83.3		ug/Kg wet	6667		94.9	45-110			
2,4,5-Trichlorophenol	6639	83.3		ug/Kg wet	6667		99.6	50-110			
Surrogate: 2-Fluorobiphenyl	2683			ug/Kg wet	3333		80.5	45-105			
Surrogate: 2-Fluorophenol	4773			ug/Kg wet	6667		71.6	35-105			
Surrogate: Nitrobenzene-d5	2426			ug/Kg wet	3333		72.8	35-100			
Surrogate: Phenol-d6	4963			ug/Kg wet	6667		74.4	40-100			
Surrogate: Terphenyl-d14	2521			ug/Kg wet	3333		75.6	30-125			
Surrogate: 2,4,6-Tribromophenol	6693			ug/Kg wet	6667		100	35-125			X
Matrix Spike (5F12003-MS1)	S	ource: 15061	09-12	Prepa	red: 06/1	5/2015 Ana	alyzed: 06/	17/2015			
Acenaphthene	3505	97.8	391	ug/Kg dry	3915	ND	89.5	45-110			
Acenaphthylene	3353	97.8	391	ug/Kg dry	3915	ND	85.6	45-105			
Acetophenone	3101	97.8	391	ug/Kg dry	3915	ND	79.2	35-110			
Anthracene	3332	97.8	391	ug/Kg dry	3915	ND	85.1	55-105			
Atrazine	3364	97.8	391	ug/Kg dry	3915	ND	85.9	55-105			
Benzaldehyde	2879	97.8	391	ug/Kg dry	3915	ND	73.5	10-160			
Benzo(a)anthracene	3377	97.8	391	ug/Kg dry	3915	ND	86.2	50-110			
Benzo(a)pyrene	22.62	97.8	391	ug/Kg dry	3915	ND	83.3	50-110			
Benzo(b)fluoranthene	3263	77.0									
	3263	97.8	391	ug/Kg dry	3915	ND	85.6	45-115			
Benzo(g,h,i)perylene				ug/Kg dry	3915 3915	ND ND	85.6 95.2	45-115 40-125			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Semivolatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (5F12003-MS1)		Source: 15061	109-12	Prepa	red: 06/15	5/2015 Ana	alyzed: 06	/17/2015
Benzo(k)fluoranthene	3293	97.8	391	ug/Kg dry	3915	ND	84.1	45-125
1,1-Biphenyl	3315	97.8	391	ug/Kg dry	3915	ND	84.7	45-110
4-Bromophenyl-phenylether	3627	97.8	391	ug/Kg dry	3915	ND	92.6	45-115
Butylbenzylphthalate	3429	97.8	391	ug/Kg dry	3915	ND	87.6	50-125
Caprolactam	3404	97.8	391	ug/Kg dry	3915	ND	86.9	50-110
Carbazole	2812	97.8	391	ug/Kg dry	3915	ND	71.8	45-115
-Chloro-3-methylphenol	6905	97.8	391	ug/Kg dry	7831	ND	88.2	45-115
-Chloroaniline	2336	97.8	391	ug/Kg dry	3915	ND	59.7	10-95
tis(2-chloroethoxy)methane	3202	97.8	391	ug/Kg dry	3915	ND	81.8	45-110
Bis(2-chloroethyl)ether	3169	97.8	391	ug/Kg dry	3915	ND	80.9	40-105
,2'-Oxybis-1-chloropropane	2902	97.8	391	ug/Kg dry	3915	ND	74.1	20-115
-Chloronaphthalene	3350	97.8	391	ug/Kg dry	3915	ND	85.6	45-105
-Chlorophenol	6477	97.8	391	ug/Kg dry	7831	ND	82.7	45-105
-Chlorophenyl phenyl ether	3541	97.8	391	ug/Kg dry	3915	ND	90.4	45-110
hrysene	3384	97.8	391	ug/Kg dry	3915	ND	86.4	55-110
benz(a,h)anthracene	3799	97.8	391	ug/Kg dry	3915	ND	97.0	40-125
ibenzofuran	3407	97.8	391	ug/Kg dry	3915	ND	87.0	50-105
i-n-butylphthalate	3392	97.8	391	ug/Kg dry	3915	ND	86.6	55-110
,3'-Dichlorobenzidine	2846	97.8	391	ug/Kg dry	3915	ND	72.7	19-130
,4-Dichlorophenol	6696	97.8	391	ug/Kg dry	7831	ND	85.5	45-110
Diethylphthalate	3508	97.8	391	ug/Kg dry	3915	ND	89.6	50-115
,4-Dimethylphenol	6909	391	1560	ug/Kg dry	7831	ND	88.2	30-105
imethyl phthalate	3560	97.8	391	ug/Kg dry	3915	ND	90.9	50-110
,6-Dinitro-2-methylphenol	6409	978	3910	ug/Kg dry	7831	ND	81.8	30-135
4-Dinitrophenol	5605	978	3910	ug/Kg dry	7831	ND	71.6	15-130
4-Dinitrotoluene	3485	97.8	391	ug/Kg dry	3915	ND	89.0	50-115
6-Dinitrotoluene	3411	97.8	391	ug/Kg dry	3915	ND	87.1	50-110
i-n-octylphthalate	3297	97.8	391	ug/Kg dry	3915	ND	84.2	40-130
is(2-ethylhexyl)phthalate	3444	97.8		ug/Kg dry	3915	ND	88.0	45-125
luoranthene	3264	97.8	391	ug/Kg dry	3915	ND	83.4	55-115

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 10:43

Semivolatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

		R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (5F12003-MS1)		Source: 15061	00 12	Drane	red: 06/14	5/2015 A.	alyzed: 06	/17/2015	
Fluorene	3449	97.8	391		3915	ND	88.1	50-110	
Hexachlorobenzene	3520	97.8	391	ug/Kg dry	3915	ND	89.9	45-120	
Hexachlorobutadiene	3629	97.8	391	ug/Kg dry	3915	ND	92.7	30-110	
Hexachlorocyclopentadiene	1621	97.8	391	ug/Kg dry	3915	ND	41.4	10-110	
Hexachloroethane	2893	97.8	391	ug/Kg dry	3915	ND	73.9	35-110	
Indeno(1,2,3-cd)pyrene	3553	97.8	391	ug/Kg dry	3915	ND	90.7	40-120	
Isophorone	2798	97.8	391	ug/Kg dry	3915	ND	71.5	45-110	
2-Methylnaphthalene	2986	97.8	391	ug/Kg dry	3915	ND	76.3	40-110	
2-Methylphenol	6452	97.8	391	ug/Kg dry	7831	ND	82.4	40-105	
4-Methylphenol	6609	97.8	391	ug/Kg dry	7831	ND	84.4	40-105	
Naphthalene	3146	97.8	391	ug/Kg dry	3915	ND	80.4	40-105	
4-Nitroaniline	2893	391	1560	ug/Kg dry	3915	ND	73.9	35-115	
3-Nitroaniline	2809	391	1560	ug/Kg dry	3915	ND	71.7	25-110	
2-Nitroaniline	3381	391	1560	ug/Kg dry	3915	ND	86.4	45-120	
Nitrobenzene	2920	97.8	391		3915	ND	74.6	40-115	
4-Nitrophenol	7549	391	1560	ug/Kg dry	7831	ND	96.4	15-140	
2-Nitrophenol	6557	97.8	391	ug/Kg dry	7831	ND	83.7	40-110	
N-Nitrosodiphenylamine	2848	97.8	391		3915	ND	72.7	50-115	
N-Nitroso-di-n-propylamine	3162	97.8	391	ug/Kg dry	3915	ND	80.8	40-115	
Pentachlorophenol	7947	391	1560		7831	ND	101	25-120	
Phenanthrene	3330	97.8	391	ug/Kg dry	3915	ND	85.0	50-110	
Phenol	5876	97.8	391		7831	ND	75.0	40-100	
Pyrene	3180	97.8	391	ug/Kg dry	3915	ND	81.2	45-125	
2,4,6-Trichlorophenol	7380	97.8	391	ug/Kg dry	7831	ND	94.2	45-110	
2,4,5-Trichlorophenol	7600	97.8		ug/Kg dry	7831	ND	97.1	50-110	
Surrogate: 2-Fluorobiphenyl	3103			ug/Kg dry	3915		79.3	45-105	
Surrogate: 2-Fluorophenyl Surrogate: 2-Fluorophenol	5636			ug/Kg ary ug/Kg dry	7831		79.3	35-105	
Surrogate: Nitrobenzene-d5	2815			ug/Kg ary ug/Kg dry	3915		71.9	35-103 35-100	
Surrogate: Phenol-d6	5672			ug/Kg ary ug/Kg dry	7831		72.4	40-100	
Surrogate: Terphenyl-d14	3071			ug/Kg ary ug/Kg dry	3915		78.4	30-125	
Surrogate: 1erpnenyi-a14 Surrogate: 2,4,6-Tribromophenol	7720			ug/Kg ary ug/Kg dry	7831		98.6	30-125 35-125	

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 95 of 109

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 10:43

RPD

%REC

Source

Semivolatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

			reporting								
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
Matrix Spike Dup (5F12003-MSD1)		Source: 150				5/2015 Ana	alyzed: 06/	17/2015			
acenaphthene	3194	99.1	396	ug/Kg dry	3964	ND	80.6	45-110	9.29	30	
cenaphthylene	3090	99.1	396	ug/Kg dry	3964	ND	78.0	45-105	8.16	30	
cetophenone	2753	99.1	396	ug/Kg dry	3964	ND	69.4	35-110	11.9	30	
anthracene	3095	99.1	396	ug/Kg dry	3964	ND	78.1	55-105	7.38	30	
atrazine	3113	99.1	396	ug/Kg dry	3964	ND	78.5	55-105	7.73	30	
enzaldehyde	2536	99.1	396	ug/Kg dry	3964	ND	64.0	10-160	12.7	30	
Benzo(a)anthracene	3131	99.1	396	ug/Kg dry	3964	ND	79.0	50-110	7.57	30	
Benzo(a)pyrene	3066	99.1	396	ug/Kg dry	3964	ND	77.3	50-110	6.23	30	
Benzo(b)fluoranthene	3169	99.1	396	ug/Kg dry	3964	ND	79.9	45-115	5.59	30	
Benzo(g,h,i)perylene	3468	99.1	396	ug/Kg dry	3964	ND	87.5	40-125	7.18	30	
Benzo(k)fluoranthene	3087	99.1	396	ug/Kg dry	3964	ND	77.9	45-125	6.44	30	
,1-Biphenyl	2960	99.1	396	ug/Kg dry	3964	ND	74.7	45-110	11.3	30	
-Bromophenyl-phenylether	3403	99.1	396	ug/Kg dry	3964	ND	85.8	45-115	6.37	30	
Butylbenzylphthalate	3193	99.1	396	ug/Kg dry	3964	ND	80.5	50-125	7.14	30	
Caprolactam Caprolactam	3204	99.1	396	ug/Kg dry	3964	ND	80.8	50-110	6.06	30	
Carbazole	2468	99.1	396	ug/Kg dry	3964	ND	62.3	45-115	13.0	30	
-Chloro-3-methylphenol	6326	99.1	396	ug/Kg dry	7928	ND	79.8	45-115	8.74	30	
-Chloroaniline	2345	99.1	396	ug/Kg dry	3964	ND	59.2	10-95	0.387	30	
sis(2-chloroethoxy)methane	2870	99.1	396	ug/Kg dry	3964	ND	72.4	45-110	10.9	30	
sis(2-chloroethyl)ether	2735	99.1	396	ug/Kg dry	3964	ND	69.0	40-105	14.7	30	
,2'-Oxybis-1-chloropropane	2614	99.1	396	ug/Kg dry	3964	ND	65.9	20-115	10.4	30	
-Chloronaphthalene	3008	99.1	396	ug/Kg dry	3964	ND	75.9	45-105	10.7	30	
-Chlorophenol	5779	99.1	396	ug/Kg dry	7928	ND	72.9	45-105	11.4	30	
-Chlorophenyl phenyl ether	3234	99.1	396	ug/Kg dry	3964	ND	81.6	45-110	9.08	30	
Chrysene	3161	99.1	396	ug/Kg dry	3964	ND	79.7	55-110	6.82	30	
Dibenz(a,h)anthracene	3521	99.1	396	ug/Kg dry	3964	ND	88.8	40-125	7.60	30	
Dibenzofuran	3171	99.1	396	ug/Kg dry	3964	ND	80.0	50-105	7.15	30	
Di-n-butylphthalate	3160	99.1	396	ug/Kg dry	3964	ND	79.7	55-110	7.07	30	
,3'-Dichlorobenzidine	2496	99.1	396	ug/Kg dry	3964	ND	63.0	19-130	13.1	30	
,4-Dichlorophenol	6120	99.1	396	ug/Kg dry	7928	ND	77.2	45-110	9.00	30	

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 10:43

RPD

%REC

Source

Semivolatile Organic Compounds by GC/MS - Quality Control **Empirical Laboratories, LLC**

			Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F12003											
Matrix Spike Dup (5F12003-MSD1)		Source: 150	6109-12	Prepa	ared: 06/1	5/2015 Ana	alyzed: 06/	17/2015			
Diethylphthalate	3258	99.1	396	ug/Kg dry	3964	ND	82.2	50-115	7.39	30	
2,4-Dimethylphenol	6272	396	1580	ug/Kg dry	7928	ND	79.1	30-105	9.67	30	
Dimethyl phthalate	3270	99.1	396	ug/Kg dry	3964	ND	82.5	50-110	8.47	30	
4,6-Dinitro-2-methylphenol	5858	991	3960	ug/Kg dry	7928	ND	73.9	30-135	8.99	30	
2,4-Dinitrophenol	5060	991	3960	ug/Kg dry	7928	ND	63.8	15-130	10.2	30	
2,4-Dinitrotoluene	3267	99.1	396	ug/Kg dry	3964	ND	82.4	50-115	6.43	30	
2,6-Dinitrotoluene	3149	99.1	396	ug/Kg dry	3964	ND	79.4	50-110	7.98	30	
Di-n-octylphthalate	3121	99.1	396	ug/Kg dry	3964	ND	78.7	40-130	5.49	30	
Bis(2-ethylhexyl)phthalate	3197	99.1	396	ug/Kg dry	3964	ND	80.6	45-125	7.44	30	
Fluoranthene	3021	99.1	396	ug/Kg dry	3964	ND	76.2	55-115	7.73	30	
Fluorene	3128	99.1	396	ug/Kg dry	3964	ND	78.9	50-110	9.78	30	
Hexachlorobenzene	3253	99.1	396	ug/Kg dry	3964	ND	82.1	45-120	7.89	30	
Hexachlorobutadiene	3295	99.1	396	ug/Kg dry	3964	ND	83.1	30-110	9.65	30	
Hexachlorocyclopentadiene	1327	99.1	396	ug/Kg dry	3964	ND	33.5	10-110	19.9	30	
Hexachloroethane	2574	99.1	396	ug/Kg dry	3964	ND	64.9	35-110	11.7	30	
ndeno(1,2,3-cd)pyrene	3302	99.1	396	ug/Kg dry	3964	ND	83.3	40-120	7.32	30	
sophorone	2513	99.1	396	ug/Kg dry	3964	ND	63.4	45-110	10.7	30	
2-Methylnaphthalene	2719	99.1	396	ug/Kg dry	3964	ND	68.6	40-110	9.36	30	
-Methylphenol	5836	99.1	396	ug/Kg dry	7928	ND	73.6	40-105	10.0	30	
-Methylphenol	5967	99.1	396	ug/Kg dry	7928	ND	75.3	40-105	10.2	30	
Naphthalene	2818	99.1	396	ug/Kg dry	3964	ND	71.1	40-105	11.0	30	
-Nitroaniline	2570	396	1580	ug/Kg dry	3964	ND	64.8	35-115	11.8	30	
3-Nitroaniline	2595	396	1580	ug/Kg dry	3964	ND	65.5	25-110	7.92	30	
2-Nitroaniline	3100	396	1580	ug/Kg dry	3964	ND	78.2	45-120	8.68	30	
Nitrobenzene	2650	99.1	396	ug/Kg dry	3964	ND	66.8	40-115	9.72	30	
-Nitrophenol	6913	396	1580	ug/Kg dry	7928	ND	87.2	15-140	8.79	30	
-Nitrophenol	5839	99.1	396	ug/Kg dry	7928	ND	73.6	40-110	11.6	30	
J-Nitrosodiphenylamine	2630	99.1	396	ug/Kg dry	3964	ND	66.4	50-115	7.95	30	
N-Nitroso-di-n-propylamine	2887	99.1	396	ug/Kg dry	3964	ND	72.8	40-115	9.09	30	
Pentachlorophenol	7465	396	1580	ug/Kg dry	7928	ND	94.2	25-120	6.25	30	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506109

Report Date: 06/29/2015

Project: Tyson Chicken 225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported:

06/29/2015 10:43

Semivolatile Organic Compounds by GC/MS - Quality Control

Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	5 T 1	20	Λ2

Matrix Spike Dup (5F12003-MSD1)		Source: 15061	09-12	Prepa	red: 06/13	5/2015 An	alyzed: 06	/17/2015			
Phenanthrene	3077	99.1	396	ug/Kg dry	3964	ND	77.6	50-110	7.89	30	
Phenol	5312	99.1	396	ug/Kg dry	7928	ND	67.0	40-100	10.1	30	
Pyrene	2976	99.1	396	ug/Kg dry	3964	ND	75.1	45-125	6.62	30	
2,4,6-Trichlorophenol	6688	99.1	396	ug/Kg dry	7928	ND	84.4	45-110	9.83	30	
2,4,5-Trichlorophenol	7107	99.1	396	ug/Kg dry	7928	ND	89.6	50-110	6.70	30	
Surrogate: 2-Fluorobiphenyl	2804			ug/Kg dry	3964		70.7	45-105			
Surrogate: 2-Fluorophenol	4907			ug/Kg dry	7928		61.9	35-105			
Surrogate: Nitrobenzene-d5	2471			ug/Kg dry	3964		62.3	35-100			
Surrogate: Phenol-d6	5056			ug/Kg dry	7928		63.8	40-100			
Surrogate: Terphenyl-d14	2798			ug/Kg dry	3964		70.6	30-125			
Surrogate: 2,4,6-Tribromophenol	6988			ug/Kg dry	7928		88.1	35-125			

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 98 of 109 EA Engineering, Science, and Technology, Inc.

Project: Tyson Chicken

225 Schilling Circle, Suite 400Project Number: EAE_TysonReported:Hunt Valley MD, 21031Project Manager: Jim Hulbert06/29/2015 10:43

Notes and Definitions

U Analyte included in the analysis, but not detected

M Indicates that the sample matrix interfered with the quantitation of the analyte. In dual column analysis the result is reported from the column with the lower concentration. In inorganics, it indicates that the parameters MDL/RL has been raised.

J Detected but below the Reporting Limit/Limit of Quantitation; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

D Data reported from a dilution

C8 To reduce matrix interference, the sample extract has undergone Copper clean-up, method 3660, which is specific to Sulfur

contamination.

B Analyte is found in the associated blank as well as in the sample.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

EMPIRICAL LABORATORIES, LLC Work Order: 1506109 Report Date: 06/29/2015 Page 99 of 109

1500102 SHIP	0 TO: 621 Ma	SMP TO: 621 Mainstream Drive. Suite 270 + I		LLC - CHAIN OF CUSTODY RECORD Nashville TN 37228 + 877-345-1113 + (fax) 866-117	(fax) 866.417.0548) Д Д Д	109
Send Results to:	Send Invoice to:	ce to:		irements.		lah lisa Oniv	00 of
Name Jim Hulbut	Name		1.6	A 114 5	VOA Headspace		z
N THE PARTY OF THE	Company_	THE WAR	7 TO	2 <u>[</u> 81	Field Filtered	≺	Z Pa
City + 10 10 1	City		271	200 SC 3	Correct Containers		
State, Zip MT> 21031	State, Zip		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	87 5 45)	Cust Seals Intact		
H85-01H	Phone		<u> </u>	le Second	Containers Intact		Z Z
Fax	Fax	ļ)) () ()	163 163 1-1	A:		
9	4		/ C				
Project No./Name:	Sampler's (Biggafute):	(Application):	2v	V(Pe- He TP	CAR #:		
# Only	Sample	Sample Description	Sample Matrix		Comments	No. Lab of Conta	Lab Use Only Containers/Pres.
@1 49115 0975	55-02	-O	SO XX	XX		S	
02 10930	\$5.02	2-4-5) XX	XXX	:	W	
	0-58	3-0-1	XX	X		T	
04 0855		5-4-5	X: X	×		4	
0	55-	06-0-1	X				
06 0955	į	06-4-5	XX				
07 1035	\$5-07	10-1	XX	*		<u>07</u>	
1040 8Q	55-07	-4-5	××	X			
(SOI) [6.00]	55.00	200-	XX	·		W	
alii 01	SS-08-4	8-4-5	×	×		N	
07-11	SS-10-	7 - 0 - 1	XX	X		ζη(
	55-10-4-	CEMIKIN 5-4		X X	MS/WSD	4	
Saprapy (xm Predictory: (Signature)	Date/Time	Received By:" (Sign	(Signature)	REMARKS:	,	Details:	
Relinquished by: (Signature)	€ k	Received By: (Sign	(Signature)	1		Page of	
(•			Cooler No	of
Relinquished by: (Signature)	Date/Time	Received By: (Sign	(Signature)			Date Shipped	SIZE
Received for Laboratory by: (Signature)	Date/Time	Temperature		1		Shipped By	anin
	000	v e	•			Turnaround	Melans

Sp6105 ship	SHIP TO: 621 Mainstream Drive, Suite 270	 Nashville, TN 37228 ◆ 877-345-1113 ◆ 		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	109
Send Results to:	Send Invoice to:	Analysis Requ	Lab Us	1	01 of
Name Jim Hulbert	Name	4 A 5	VOA Headsnace	z	<u>z </u> je 1
V FIN	•	13 81 151	Field Filtered	z	Z
Address CCV CXXIIIX CIRC		20 80 81	Correct Containers		Ŧ
State Zip MY 217 21	State Zin	5 20	Discrepancies	z	×
Phone 410 584 700	Phone	8 28 20 20 20 20	Containers Intact	zz	Z Z
Fax		(5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) 		
	—	VE L 110X Shir) 		
	Sampler's (Signature):	PP Per + H	CAX #		_
Lab Use Only Lab # Date/Time Sampled	Sample Description S	Sample Matrix	Comments C	No. Lab Use Only of Containers/Pres	82 < <u>≤</u>
3121212	55-09-0-1	X X X X	<i>5</i> A s		
12C h	25-09-45	XXX	•		
15	Dug -01	XXX			
16 V	Duo-02	× × ×			
	-				
				į	
Sample Kit Prep'thyn (Signature)	Date/Time Received By: (Signature)	e) REMARKS:		7	
aliponished by Wanthank			Page	۱,	1
. 0	- marine		Coc	Cooler No of	
delinquished by: (Signature)	Date/Time Received By: (Signature)	e)	Dat	Date Shipped (0/9)	M
Received for Laboratory by: (Signature)	Date/Time Temperature		Shi	Shipped By CNY	<u>اب</u>
5	7/m/2000 0.7		Tur	Turnaround 10 day	to
Distribution: Original and yellow copies	pies accompany sample shipment to laboratory;	laboratory; Pink retained by samplers.			L

II. EMPIRICAL LABORATORIES COOLER RECEIPT FORM

Coc	oler Received/Opened On: 06/10/15 @0900 Work order#	506109
1.	Tracking #(last 4 digits, FedEx)	
	Courier: FedEx	2
2.	Temperature of rep. sample or temp blank when opened: 0.2° C + correction factor(-0.0) =	- Cc
3.	If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO (NA
4.	Were custody seals on outside of cooler?	(YES).NONA
	If yes, how many and where:	
5.	Were the seals intact, signed, and dated correctly?	YES .NONA
6.	Were custody papers inside cooler?	.NONA
	I certify that I opened the cooler and answered questions 1-6 (initial/date)	6/10/1S
7.	Were custody seals on containers: YES NO and Intact	YESNO. NA
	Were these signed and dated correctly?	YESNO. NA
8.	Packing material used Bubble wrap Plastic bag Peanuts Vermiculite Foam Insert Paper C	Other None
9.	Cooling process: Ice (ce-pac) Ice (direct contact) Dry ice Other	None
10.	Did all containers arrive in good condition (unbroken)?	YES NO NA
11.	Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12.	Did all container labels and tags agree with custody papers?	YES).NONA
13.	a. Were VOA vials received?	YES NA TO-6/18/15
	b. Was there observable headspace present in any VOA vial (>5mm-6mm)?	YESNO(NA
14.	Was there a Trip Blank in this cooler (custody seals present/intact)? YES. NO. NAComments if multiple coolers, sequence #	
	I certify that I unloaded the cooler and answered questions 7-14 (initial/date)	<u> G/10/1></u>
15.	a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
	b. Did the bottle labels indicate that the correct preservatives were used?	YESNO.(.NA
16.	Was residual chlorine present?	YESNO (.NA
	I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial/date)	STG-6/10/15
17.	Were custody papers properly filled out (ink, signed, etc)?	ES .NONA
18.	Did you sign the custody papers in the appropriate place?	YES NONA
19.	Were correct containers used for the analysis requested?	YESNO .NAT
20.	Was sufficient amount of sample sent in each container? (ES.) NONA If not, PM notified?	YESNONA
21.	Were there Non-Conformance issues at login? YES. NO. NCR#	-
l ce	ertify that I entered this project into LIMS and answered questions 17-21 (initial/date)	6/10/15
I ce	rtify that I attached a label with the unique LIMS number to each container (initial/date) <u> </u>	6/10/15

1 certify that I notified the laboratory of any short holding time or RUSH parameters (initial/date)

II. EMPIRICAL LABORATORIES **COOLER RECEIPT FORM (Continued)**

	(Continued)	
LIMS Data Entry Second Check		V 861-6
22. Cooler Receipt Form Issues reviewed and communicated to PM?	Work orde	r#
23. Client and Project verified to match the COC/CRF in LIMS Project So		YESNO. NA
24. Following items verified to items verified to match the COC/CRF in L	creen?	(ESP.NONA
a. Received Date/Received By	IMS Receipt Screen:	· ·
b. TAT (COC specified different?)	ESNONA	
c. Shipping Container Temperatures (corrected temps)	ESNONA	
d. Condition Items (seals, intact, labels, preservation, ROI)	YES NO NA	
25. Following LIMS Sample Information verified against COC for each sai	YES NONA	
a. Name		
b. QC Source	ES .NONA	
c. Matrix	TESNONA	
d. Sample Type	VESNONA	
e. Sampled Date/Time (Correct Time Zone)	\sim	
f. Work Analyses/Versions (if applicable)	YESNONA	
g. Sample Issues included in comments (limited volume, concentration	On warnings, etc.)2	
h. Unpreserved VOA holding time set to 7 days?	YESNO.NA	YESNO.(NA)
26. Containers consistent with tests requested?	TESNONA	
27. Field data entered and matching COC?		YESNONA
		YESNONA
certify that I have verified the LIMS data entry and answered questions 23	-27 above (initial/date):	TA COLULL

Additional Details:

III. EMPIRICAL LABORATORIES, LLC DATA ENTRY VERIFICATION FORM – PROJECT MANAGEMENT

Workorder#: <u>1506109</u>

	Verification Item	Yes	No	NA
1.	Cooler Receipt Form Issues reviewed and communicated to client			X
2.	Element/ Project Screen/items verified to match the COC/CRF:			
a.	Client/Project	Χ		
b.	Comments requiring laboratory reminder?			Х
C.	Client and/or Project Memo requiring laboratory reminder?			Х
3.	Receipt Screen items verified to match the COC/CRF:			
a.	Received Date/Received By	Χ		
b.	Workorder Due Date	Χ		
C.	Package Due Date	Χ		
d.	TAT	Χ		
e.	SDG Identifier Populated	Χ		
4.	Sample Information verified against COC for each sample:			
a.	Name	Χ		
b.	QC Source	Χ		
C.	Matrix	Х		
d.	Sample Type	Χ		
e.	Sampled Date/Time (Correct Time Zone)	Χ		
f.	Work Analyses/Versions	Х		
g.	Sample Issues included in comments	Х		
h.	Unpreserved VOA holding time set to 7 days			Х
5.	Containers consistent with tests requested	Χ		
6.	Field data entered and matching COC, if applicable			Х
	I certify that I have performed a second check of the LIMS information against the COC to confirm accuracy (initial/date):		SMG 6/10/201	5

Job No: FA25196

Sample Receipt Confirmation

Empirical Labs

Tyson Chicken Project No: 1506109

Sample	Collected		Matrix			Client		
Number	Date	Time By	Received	TA	Code	Type		Sample ID
FA25196-1	06/09/15	09:25 EL	06/13/15	4	so	Soil		1506109-01/SS-02-0-1
FA25196-2	06/09/15	09:30 EL	06/13/15	4	so	Soil		1506109-02/SS-02-4-5

Tests: %SOL, H8151FL

Tests are displayed after the samples to which they apply.

SUBCONTRACT ORDER

FA25196

Empirical Laboratories, LLC

1506109

SENDING LABORATORY:

621 Mainstream Drive, Suite 270 Empirical Laboratories, LLC Phone: 615.345.1115 Nashville, TN 37228

Sonya Gordon Fax: 866.417.0548 Project Manager:

RECEIVING LABORATORY:

Accutest Laboratories (SUB) Phone :(407) 425-6700 Fax: (407) 425-0707 Orlando, FL 32811 4405 Vineland Rd

Project Tyson

PO#15-044

Analysis	Due	Expires	Laboratory ID Comments	Comments
Sample ID: SS-02-0-1				
Reference No: 1506109-01 Solid		Sampled:06/09/2015 09:25		
SUB_HERB_8151A_SOIL 06/19/2015 16:00 06/23/2015 08:25 Containers Supplied: 06/19/2015 16:00 06/23/2015 08:25	06/19/2015 16:00	06/23/2015 08:25		
Comple ID, CC 02.4 6				
Reference No: 1506109-02 Solid		Sampled:06/09/2015 09:30	Tr.	
SUB_HERB_8151A_SOIL 06/19/2015 16:00 06/23/2015 08:30	06/19/2015 16:00	06/23/2015 08:30		
Containers Supplied:				

EQUIS ED

Date: 12Jun16 Mgt: 12.55 LBS

17.63 17.01 9.00 34.64

Svoe, PRIORITY OVERNIGHT Svoe, PRIORITY 6279 2847

75.4<u>3</u>

A STATE OF THE PARTY OF THE PAR

Received By

Date

Date

leased By

Page 106 of 109

Received By

ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION ACCUTEST'S JOB NUMBER: TA25196 CLIENT: Empirical Labs PROJECT: 1506086 DATE/TIME RECEIVED: 06-13-15 930 {MM/DD/YY 24:00} NUMBER OF COOLERS RECEIVED: METHOD OF DELIVERY: FEDEX UPS ACCUTEST COURIER DELIVERY OTHER: 6377 AIRBILL NUMBERS: **COOLER INFORMATION** TEMPERATURE INFORMATION CUSTODY SEAL NOT PRESENT OR NOT INTACT IR THERM ID CORR. FACTOR ーひ-と CHAIN OF CUSTODY NOT RECEIVED (COC) OBSERVED TEMPS: ANALYSIS REQUESTED IS UNCLEAR OR MISSING CORRECTED TEMPS: SAMPLE DATES OR TIMES UNCLEAR OR MISSING SAMPLE INFORMATION TEMPERATURE CRITERIA NOT MET INCORRECT NUMBER OF CONTAINERS USED SAMPLE RECEIVED IMPROPERLY PRESERVED TRIP BLANK INFORMATION INSUFFICIENT VOLUME FOR ANALYSIS TRIP BLANK PROVIDED ... DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL TRIP BLANK NOT PROVIDED ID'S ON COC DO NOT MATCH LABEL TRIP BLANK NOT ON COC VOC VIALS HAVE HEADSPACE (MACRO BUBBLES) TRIP BLANK INTACT BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED TRIP BLANK NOT INTACT NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED RECEIVED WATER TRIP BLANK UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS RECEIVED SOIL TRIP BLANK SAMPLE CONTAINER(S) RECEIVED BROKEN 5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS MISC. INFORMATION BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS NUMBER OF ENCORES? 25-GRAM 5-GRAM % SOLIDS JAR NOT RECEIVED NUMBER OF 5035 FIELD KITS? RESIDUAL CHLORINE PRESENT LOT# NUMBER OF LAB FILTERED METALS? {APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS} pH PAPER LOT#s WIDE RANGE A036122 NARROW RANGE HC421754 OTHER (specify) SUMMARY OF COMMENTS: No Bottles Received For this COC. We Received 2 402 Soll Jars TDS 1506109-014, 1506109-028 WITH be Saples 1, Z

TECHNICIAN SIGNATURE/DATE MULL 06.15.15
REVIEWER SIGNATURE/DATE

ORIGIN ID MGYA (618) 345-1115
DELIA WEBER
EMPIRICAL LABORATORIES, LLC
621 MAINSTREAN DR
SUITE 270
NASHVILLE IN 37228
UNITED STATES US

SHIP DATE: 12JUN15 ACTHET: 12 6 LB CAD: 0106173/CAFE2807

BTEL SENDER

TO ATTN: SAMPLE RECEIVING ACCUTEST LABORATORIES

ORLANDO FL 32811

FedEX Express

SATURDAY 12:00P PRIORITY OVERNIGHT

32811 FL-US MCO

B 2847

Empirical Laboratories, LLC Certifications/Approvals (Revised 04/22/2015)

DoD ELAP QSM5.0, Certificate Number L2226

- Aqueous
- Non-aqueous
- Expires: 11/30/2015

State of Florida, Department of Health – NELAP, Lab ID: E87646

- Clean Water Act
- RCRA/CERCLA
- Expires: 06/30/2015

State of Georgia, Environmental Protection Agency - NELAP, Self Certification

• Expires: 06/30/2015

State of Illinois, Environmental Protection Agency - NELAP, Certificate Number: 003464

- Groundwater
- Solid and Hazardous Waste
- Expires: 09/13/2015

Commonwealth of Kentucky, Energy and Environment Cabinet - WWLCP, Laboratory Number: 98017

- Wastewater
- Expires: 12/31/2015

Commonwealth of Kentucky, Department of Environmental Protection - UST, Certificate Number: 77

- Aqueous
- Non-aqueous
- Expires: 06/30/2015

State of New Jersey, Department of Environmental Protection - NELAP Primary, Lab ID: TN473

- Water Pollution
- Solid and Hazardous Waste
- Expires: 06/30/2015

State of North Carolina, Department of Environment and Natural Resources - Certificate Number: 643

- Aqueous
- Non-aqueous
- Expires: 12/31/2015

State of North Dakota, Department of Health - NELAP, Certificate No.: R-204

- Aqueous
- Non-aqueous
- Expires: 06/30/2015

Commonwealth of Pennsylvania, Department of Environmental Protection - NELAP, Lab ID: 68-05374

- Aqueous
- Non-aqueous
- Expires: 10/31/2015

State of Texas, Commission on Environmental Quality – NELAP, Certificate Number: T104704307-15-11

- Aqueous
- Non-aqueous
- Expires: 12/31/2015

State of Utah, Department of Health - NELAP, Certificate Number: TN0042014-6

- Aqueous
- Non-aqueous
- Expires: 07/31/2015

Commonwealth of Virginia, Department of General Services - NELAP, Certificate Number: 7700, Lab ID: 460243

- Aqueous
- Non-aqueous
- Expires: 12/14/2015

State of Washington, Department of Ecology - NELAP, Lab ID: C934-15

- Groundwater
- Solid and Hazardous Waste
- Expires: 03/18/2016

06/18/15

Technical Report for

Empirical Labs

Tyson Chicken

1506109

Accutest Job Number: FA25196

Sampling Date: 06/09/15

Report to:

Empirical Labs 621 Mainstream Dr Suite 270 Nashville, TN 37228 sgordon@empirlabs.com

ATTN: Sonya Gordon

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Muna Mohammed 407-425-6700

 $\begin{array}{l} \text{Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL002), SC (96038001) } \\ \text{DoD ELAP (L-A-B L2229), CA (2937), TX (T104704404), PA (68-03573), VA (460177),} \end{array}$

AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: FA25196-1: 1506109-01/SS-02-0-1	6
3.2: FA25196-2: 1506109-02/SS-02-4-5	7
Section 4: Misc. Forms	8
4.1: Chain of Custody	9
Section 5: GC Semi-volatiles - QC Data Summaries	13
5.1: Method Blank Summary	14
5.2: Blank Spike Summary	15
5.3: Matrix Spike/Matrix Spike Duplicate Summary	16

Sample Summary

Empirical Labs

Job No: FA25196

Tyson Chicken Project No: 1506109

Sample	Collected			Matr	ix	Client
Number	Date	Time By	Received	Code	Type	Sample ID
FA25196-1	06/09/15	09:25 EL	06/13/15	SO	Soil	1506109-01/SS-02-0-1
FA25196-2	06/09/15	09:30 EL	06/13/15	SO	Soil	1506109-02/SS-02-4-5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits

Job Number: FA25196
Account: Empirical Labs
Project: Tyson Chicken
Collected: 06/09/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
FA25196-1	1506109-01/SS-02-	-0-1				
Dichloroprop ^a 2,4-DB ^a		75.6 119	39 39	18 10	ug/kg ug/kg	SW846 8151A SW846 8151A

FA25196-2 1506109-02/SS-02-4-5

No hits reported in this sample.

(a) All hits confirmed by dual column analysis.

Sample Results	
Report of Analysis	

Page 1 of 1

Report of Analysis

Client Sample ID: 1506109-01/SS-02-0-1

 Lab Sample ID:
 FA25196-1
 Date Sampled:
 06/09/15

 Matrix:
 SO - Soil
 Date Received:
 06/13/15

 Method:
 SW846 8151A
 SW846 3550C
 Percent Solids:
 85.8

Project: Tyson Chicken

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1 a
 CC048313.D
 1
 06/17/15
 FS
 06/16/15
 OP56485
 GCC855

 Run #2
 GCC855
 GCC855
 GCC855
 GCC855
 GCC855

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7	2,4-D	ND	39	12	ug/kg	
93-72-1	2,4,5-TP (Silvex)	ND	3.9	0.90	ug/kg	
93-76-5	2,4,5-T	ND	3.9	1.5	ug/kg	
1918-00-9	Dicamba	ND	3.9	1.6	ug/kg	
88-85-7	Dinoseb	ND	96	19	ug/kg	
75-99-0	Dalapon	ND	190	39	ug/kg	
120-36-5	Dichloroprop	75.6	39	18	ug/kg	
94-82-6	2,4-DB	119	39	10	ug/kg	
93-65-2	MCPP	ND	3900	1600	ug/kg	
94-74-6	MCPA	ND	3900	1500	ug/kg	
87-86-5	Pentachlorophenol	ND	3.9	1.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9	2,4-DCAA	63%		31-13	32%	

(a) All hits confirmed by dual column analysis.

ND = Not detected

 $MDL = \ Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Report of Analysis

Client Sample ID: 1506109-02/SS-02-4-5

 Lab Sample ID:
 FA25196-2
 Date Sampled:
 06/09/15

 Matrix:
 SO - Soil
 Date Received:
 06/13/15

 Method:
 SW846 8151A
 SW846 3550C
 Percent Solids:
 84.7

Project: Tyson Chicken

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 CC048314.D 1 06/17/15 FS 06/16/15 OP56485 GCC855

Run #2

Initial Weight Final Volume

Run #1 15.6 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7	2,4-D	ND	38	11	ug/kg	
93-72-1	2,4,5-TP (Silvex)	ND	3.8	0.88	ug/kg	
93-76-5	2,4,5-T	ND	3.8	1.5	ug/kg	
1918-00-9	Dicamba	ND	3.8	1.6	ug/kg	
88-85-7	Dinoseb	ND	95	19	ug/kg	
75-99-0	Dalapon	ND	190	38	ug/kg	
120-36-5	Dichloroprop	ND	38	17	ug/kg	
94-82-6	2,4-DB	ND	38	10	ug/kg	
93-65-2	MCPP	ND	3800	1600	ug/kg	
94-74-6	MCPA	ND	3800	1500	ug/kg	
87-86-5	Pentachlorophenol	ND	3.8	1.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9	2,4-DCAA	49%		31-1	32%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

	r •	-	
N/	lisc.	Forms	7
1 1	130.	(7) 1113	٠

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

SUBCONTRACT ORDER
Empirical Laboratories, LLC
1506109

FA25196

SENDING LABORATORY:	RECEIVING LABORATORY:
Empirical Laboratories, LLC	Accutest Laboratories (SUB)
621 Mainstream Drive, Suite 270	4405 Vineland Rd
Nashville, TN 37228	Orlando, FL 32811
Phone: 615,345,1115	Phone :(407) 425-6700
Fax: 866.417.0548	Fax: (407) 425-0707
Project Manager: Sonya Gordon	

Analysis	Due	Expires	Laboratory ID Comments	Comments
Sample ID: SS-02-0-1				bosto
Reference No: 1506109-01 Solid		Sampled: 06/09/2015 09:25		-
SUB_HERB_8151A_SOIL 06/19/2015 16:00 06/23/2015 08:25	06/19/2015 16:00	06/23/2015 08:25		
Containers Supplied:				
Sample ID: SS-02-4-5				
Reference No: 1506109-02 Solid		Sampled:06/09/2015 09:30		
SUB_HERB_8151A_SOL 06/19/2015 16:00 06/23/2015 08:30	06/19/2015 16:00	06/23/2015 08:30		
Containers Supplied:				
level 2 report	400			

7.00 0.00

Received By Received By

FA25196: Chain of Custody Page 1 of 4 SUBCONTRACT ORDER
Empirical Laboratories, LLC
1506086

					S. W. S.
Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: OBMW8 Reference No: 1506086-07	Water Sample	Sampled:06/08/2015 10:45			
SUB_SPECIALTY Containers Supplied:	015 10	12/05/2015 09:45		Perchlorate by 331.0 DW	
Sample ID: OBEB Reference No: 1506086-08	Water Sample	Sampled: 06/08/2015 12:20			× -
SUB_SPECIALTY Containers Supplied:	2015 10	12/05/2015 11:20		Perchlorate by 331.0 DW	
Sample ID: OBFB Reference No: 1506086-09	Water Sample	Sampled:06/08/2015 10:30			Section 2018 (Control of the Control
SUB SPECIALTY Containers Supplied:	06/18/2015 16:00	12/05/2015 09:30		Perchlorate by 331.0 DW	
1 1	Samples may be brackish	-ackish			
Level 4 ds	end 4 data package Basic excel EDD	*5			
					· X · X · X · X · X · X · X · X · X · X
	,				
Redemond By	C)O)	Sija	F. Keceived By	Date	
Released By 06/13/15	\$30 Date		All Un-	2 4 Date	Pase 2 of 2
				- 45	

FA25196: Chain of Custody Page 2 of 4

ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION	
ACCUTEST'S JOB NUMBER: 17425196 CLIENT: Empirical Labs PROJECT: 1506086	
DATE/FIME DECEMBED. (16-13-15 C.7.)	
METHOD OF DELIVERY AFREY UND	_
METHOD OF DELIVERY: FEDEX UPS ACCUTEST COURIER DELIVERY OTHER: AIRBILL NUMBERS: 6377 (27.79 7847	
COOLED DECOMMENDA	
COOLER INFORMATION CUSTODY SEAL NOT PRESENT OR NOT INTACT TEMPERATURE INFORMATION IR THERM ID (COND. F. COOL. F. COO	
CORR. FACTOR -U-C	
ANALY WOOD DECYMENT TO THE STATE OF THE STAT	
CAMPIED DATE OF THE STATE OF TH	
THE PARTY OF THE P	
THEORIGET NOMBER OF CONTAINERS USED	
TRIP BLANK INFORMATION SAMPLE RECEIVED IMPROPERLY PRESERVED	
TOTAL PROVIDED	
DATES/ LIMIES ON COC DO NOT MATCH SAMPLE LABEL	
TIPE DE LANGUE ON COC DO NOT MATCH LABEL	
TOUR DI ANE DE CE	
BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED	
NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED	
UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS	
SAMPLE CONTAINER(S) RECEIVED BROKEN	
MISC. INFORMATION 5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS	
NUMBER OF ENCORES 2 OF CRASH	
NUMBER OF 5025 FIELD MATERIA	
NUMBER OF JOSS FIELD KITS? RESIDUAL CHLORINE PRESENT LOT#	
APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS	
pH PAPER LOT#s WIDE RANGE A036122 NARROW RANGE HC421754 OTHER (specify) 405-230010	
SUMMARY OF COMMENTS: NO Bottles Packing For this And the Research	
SUMMARY OF COMMENTS: NO Bottlas Received For this COC. We Received & 402 5011 Jais	
TOS 1506109-01A, 1506109-028 WITH be Saples 1, Z	
TECHNICIAN SIGNATURE/DATE MULL 06.15.15 REVIEWER SIGNATURE/DATE	_
	_
NF 10/14 receipt confirmation 102914.xls	

FA25196: Chain of Custody

Page 3 of 4

FA25196: Chain of Custody Page 4 of 4

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8151A

Method Blank Summary Job Number: FA25196

ELTNN Empirical Labs Account:

Project: Tyson Chicken

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP56485-MB	CC048311.D	1	06/17/15	FS	06/16/15	OP56485	GCC855

The QC reported here applies to the following samples:

FA25196-1, FA25196-2

CAS No.	Compound	Result	RL	MDL	Units Q
94-75-7	2,4-D	ND	33	10	ug/kg
93-72-1	2,4,5-TP (Silvex)	ND	3.3	0.78	ug/kg
93-76-5	2,4,5-T	ND	3.3	1.3	ug/kg
1918-00-9	Dicamba	ND	3.3	1.4	ug/kg
88-85-7	Dinoseb	ND	83	17	ug/kg
75-99-0	Dalapon	ND	170	33	ug/kg
120-36-5	Dichloroprop	ND	33	15	ug/kg
94-82-6	2,4-DB	ND	33	8.8	ug/kg
93-65-2	MCPP	ND	3300	1400	ug/kg
94-74-6	MCPA	ND	3300	1300	ug/kg
87-86-5	Pentachlorophenol	ND	3.3	1.2	ug/kg

CAS No. **Surrogate Recoveries** Limits

19719-28-9 2,4-DCAA

53% 31-132%

Page 1 of 1

Method: SW846 8151A

Blank Spike Summary Job Number: FA25196

Account: ELTNN Empirical Labs

Tyson Chicken **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP56485-BS	CC048312.D	1	06/17/15	FS	06/16/15	OP56485	GCC855

The QC reported here applies to the following samples:

FA25196-1, FA25196-2

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
94-75-7	2,4-D	167	111	67	43-124
93-72-1	2,4,5-TP (Silvex)	16.7	12.4	74	41-130
93-76-5	2,4,5-T	16.7	12.7	76	40-124
1918-00-9	Dicamba	16.7	10.5	63	32-129
88-85-7	Dinoseb	83.3	21.8	26	10-124
75-99-0	Dalapon	417	115	28	10-133
120-36-5	Dichloroprop	167	142	85	51-145
94-82-6	2,4-DB	167	123	74	42-130
93-65-2	MCPP	16700	12800	77	34-130
94-74-6	MCPA	16700	12800	77	37-124
87-86-5	Pentachlorophenol	16.7	18.5	111	45-126

CAS No.	Surrogate Recoveries	BSP	Limits
19719-28-9	2,4-DCAA	65%	31-132%

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846 8151A

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA25196

Account: ELTNN Empirical Labs

Project: Tyson Chicken

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP56485-MS	CC048315.D	1	06/17/15	FS	06/16/15	OP56485	GCC855
OP56485-MSD	CC048316.D	1	06/17/15	FS	06/16/15	OP56485	GCC855
FA25196-2	CC048314.D	1	06/17/15	FS	06/16/15	OP56485	GCC855

The QC reported here applies to the following samples:

FA25196-1, FA25196-2

CAS No.	Compound	FA25196-2 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
94-75-7	2,4-D	ND	189	193	102	188	184	98	5	43-124/32
93-72-1	2,4,5-TP (Silvex)	ND	18.9	10.6	56	18.8	8.7	46	20	41-130/31
93-76-5	2,4,5-T	ND	18.9	9.4	50	18.8	8.3	44	12	40-124/35
1918-00-9	Dicamba	ND	18.9	10.8	57	18.8	10.4	55	4	32-129/34
88-85-7	Dinoseb	ND	94.6	38.8	41	94	21.9	23	56*	10-124/41
75-99-0	Dalapon	ND	473	147	31	470	111	24	28	10-133/35
120-36-5	Dichloroprop	ND	189	132	70	188	114	61	15	51-145/34
94-82-6	2,4-DB	ND	189	149	79	188	123	65	19	42-130/34
93-65-2	MCPP	ND	18900	9190	49	18800	8580	46	7	34-130/34
94-74-6	MCPA	ND	18900	11600	61	18800	10600	56	9	37-124/35
87-86-5	Pentachlorophenol	ND	18.9	15.7	83	18.8	13.6	72	14	45-126/32

CAS No.	Surrogate Recoveries	MS	MSD	FA25196-2	Limits
19719-28-9	2,4-DCAA	54%	48%	49%	31-132%

^{* =} Outside of Control Limits.

29 June 2015

Jim Hulbert
EA Engineering, Science, and Technology, Inc.
225 Schilling Circle, Suite 400
Hunt Valley, MD 21031

RE: Tyson Chicken

Enclosed are the results of analyses for samples received by the laboratory on 06/11/2015 09:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sonya Gordon

Project Manager

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert Reported:

06/29/2015 15:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS-01-0-1	1506117-01	Solid	06/10/2015 09:10	06/11/2015 09:30
SS-01-4-5	1506117-02	Solid	06/10/2015 09:15	06/11/2015 09:30
SS-04-0-1	1506117-03	Solid	06/10/2015 09:40	06/11/2015 09:30
SS-04-4-5	1506117-04	Solid	06/10/2015 09:45	06/11/2015 09:30
SS-05-0-1	1506117-05	Solid	06/10/2015 08:40	06/11/2015 09:30
SS-05-4-5	1506117-06	Solid	06/10/2015 08:45	06/11/2015 09:30
GW-03	1506117-07	Water	06/10/2015 13:15	06/11/2015 09:30
GW-04	1506117-08	Water	06/10/2015 11:05	06/11/2015 09:30
DUP-GW-01	1506117-09	Water	06/10/2015 00:00	06/11/2015 09:30
TB-01	1506117-10	Water	06/10/2015 00:00	06/11/2015 09:30

The samples were received and processed using normal regulatory and laboratory protocols. Unless noted in the Final Report, there were no significant data anomalies or failures noted during data assessment and reporting. The results within this report relate only to the samples received and reported for this project and this report shall not be reproduced except in full, without the approval of Empirical Laboratories, LLC. The test results meet all requirements of NELAC unless otherwise noted. Data uncertainty is linked to the method and regulatory mandated quality control data associated with the sample. Prior to accepting a Project, Empirical Laboratories, LLC verifies certification requirements and where applicable ensures that the requirements are in place prior to sample analysis. Many states do not carry matrix or program specific certifications. A listing of certifications held by Empirical Laboratories, LLC is included at the end of this report.

SW8270D

Surrogate 2,4,6-Tribromophenol shows a potential positive bias on a reported concentration exceeding the higher control limit on the high side for CCVs. Associated data are flagged with an X qualifier.

SW7470A

The QC for the Matrix Spike and Matrix Spike Duplicate exceeded criteria in batch 5F09023 for Mercury. Associated samples are flagged with an N qualifier.

SW8260B

The QC for the Matrix Spike and Matrix Spike Duplicate exceeded criteria in batch 5F15917 for Methylcyclohexane. Associated compounds are flagged with an N qualifier.

The QC exceeded criteria in batch 5F15917 for Methylcyclohexane. Associated samples are qualified with a Q qualifier.

Methylcyclohexane shows a potential positive bias on a reported concentration exceeding the higher control limit on the high side for CCVs. Associated data are flagged with an X qualifier.

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 2 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 15:37

SS-01-0-1 1506117-01 (Solid)

Project Manager: Jim Hulbert

			Reporting	<u> </u>						
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laborato	ries, LL	C					
Classical Chemistry Parameters										
% Solids	64	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.48	2.96 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	U
Arsenic	0.926	0.887	2.96 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
eryllium	ND	0.296	1.48 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	Ţ
admium	ND	0.296	1.48 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	Ţ
Chromium	3.70	0.591	2.96 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Copper	13.3	1.18	2.96 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
ead	6.43	0.444	1.48 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
lickel	3.37	0.887	2.96 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
elenium	ND	0.887	2.96 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	Ţ
ilver	ND	0.296	2.96 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	Ţ
hallium	ND	0.887	2.37 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	Ţ
iine	64.5	1.48	5.91 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Iercury by CVAA										
lercury	ND	0.0211	0.0535 n	ng/Kg dry	1	5F15935	06/15/15	06/17/15	SW7471B	Ţ
emivolatile Organic Compounds by GC	/MS									
cenaphthene	ND	1260	5050 ι	ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	J
cenaphthylene	ND	1260	5050 ι	ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	Ţ
cetophenone	ND	1260	5050 ι	ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	Ţ
nthracene	ND	1260		ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	J
trazine	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	Ţ
enzaldehyde	ND	1260		ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	Į
enzo(a)anthracene	ND	1260		ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	Ţ
enzo(a)pyrene	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	τ
enzo(b)fluoranthene	ND	1260		ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	Ţ
enzo(g,h,i)perylene	ND	1260		ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	Ţ
enzo(k)fluoranthene	ND	1260		ıg/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	ι
1-Biphenyl	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	Ţ
Bromophenyl-phenylether	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	ι
utylbenzylphthalate	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	Ţ
aprolactam	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	Ţ
arbazole	ND	1260		ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	Ţ
		1260		ıg/Kg dry ıg/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	Ţ
-Chloro-3-methylphenol	INI J									•
• •	ND ND					5F18004	06/22/15	06/25/15	SW8270D	ī
-Chloro-3-methylphenol -Chloroaniline bis(2-chloroethoxy)methane	ND ND ND	1260 1260	5050 ι	ıg/Kg dry ıg/Kg dry	10	5F18004 5F18004	06/22/15 06/22/15	06/25/15 06/25/15	SW8270D SW8270D	T T

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-01-0-1 1506117-01 (Solid)

Analyte	Result	MDL	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratories, LL	C					
Semivolatile Organic Compounds by GO	C/MS								
2,2'-Oxybis-1-chloropropane	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chloronaphthalene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chlorophenol	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Chrysene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenz(a,h)anthracene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenzofuran	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-butylphthalate	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dichlorophenol	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Diethylphthalate	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dimethylphenol	ND	5050	20200 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Dimethyl phthalate	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	12600	50500 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrophenol	ND	12600	50500 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrotoluene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,6-Dinitrotoluene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-octylphthalate	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Fluoranthene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Fluorene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobenzene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobutadiene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorocyclopentadiene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachloroethane	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Isophorone	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylnaphthalene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylphenol	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Methylphenol	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Naphthalene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitroaniline	ND	5050	20200 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
3-Nitroaniline	ND	5050	20200 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitroaniline	ND	5050	20200 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Nitrobenzene	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitrophenol	ND	5050	20200 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitrophenol	ND	1260	5050 ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitrosodiphenylamine	ND	1260	5050 ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	1260	5050 ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

SS-01-0-1 1506117-01 (Solid)

			Reporting							
Analyte	Result	MDL	Limit U	Jnits I	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical l	Laboratories	, LLC	C					
Semivolatile Organic Compounds by GC/MS										
Pentachlorophenol	ND	5050	20200 ug/K	g dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Phenanthrene	ND	1260	5050 ug/K	g dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Phenol	ND	1260	5050 ug/K	g dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Pyrene	ND	1260	5050 ug/K	g dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,6-Trichlorophenol	ND	1260	5050 ug/K	g dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,5-Trichlorophenol	ND	1260	5050 ug/K	g dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		61.4 %	45-	-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2-Fluorophenol		46.0 %	35-	-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Nitrobenzene-d5		50.8 %	35-	-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Phenol-d6		52.1 %	40-	-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Terphenyl-d14		63.6 %	30-	-125		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		73.7 %	35-	-125		5F18004	06/22/15	06/25/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 5 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

S-01-4-5

SS-01-4-5 1506117-02 (Solid)

Reporting

			Reporting	3						
Analyte	Result	MDL	Limit	t Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborato	ries, LL	C					
Classical Chemistry Parameters										
% Solids	86	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.08	2.15 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	1
Arsenic	1.06	0.645	2.15 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Beryllium	ND	0.215	1.08 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	1
Cadmium	ND	0.215	1.08 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Chromium	4.71	0.430	2.15 n	ng/Kg dry	/ 1	5F16727	06/16/15	06/18/15	SW6010C	
Copper	2.52	0.860	2.15 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Lead	5.45	0.323	1.08 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Nickel	2.43	0.645	2.15 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Selenium	ND	0.645	2.15 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Silver	ND	0.215	2.15 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Thallium	ND	0.645	1.72 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Zinc	5.60	1.08	4.30 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0174	0.0442 n	ng/Kg dry	, 1	5F15935	06/15/15	06/17/15	SW7471B	
Semivolatile Organic Compounds by C	GC/MS									
Acenaphthene	ND	93.9	376 ι	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	1
Acenaphthylene	ND	93.9	376 ı	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Acetophenone	ND	93.9	376 ı	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Anthracene	ND	93.9	376 ı	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Atrazine	ND	93.9	376 ı	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzaldehyde	ND	93.9	376 ı	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzo(a)anthracene	ND	93.9	376 ı	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzo(a)pyrene	ND	93.9	376 ι	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzo(b)fluoranthene	ND	93.9	376 ι	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzo(g,h,i)perylene	ND	93.9	376 ι	ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzo(k)fluoranthene	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
1,1-Biphenyl	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
4-Bromophenyl-phenylether	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
Butylbenzylphthalate	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
Caprolactam	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
Carbazole	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
4-Chloro-3-methylphenol	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
4-Chloroaniline	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
Bis(2-chloroethoxy)methane	ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
Bis(2-chloroethyl)ether	ND ND	93.9		ug/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	1

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-01-4-5 1506117-02 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratories, LL	C					
Semivolatile Organic Compounds by GC/MS									
2-Chloronaphthalene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chlorophenol	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Chrysene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenz(a,h)anthracene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenzofuran	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-butylphthalate	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dichlorophenol	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Diethylphthalate	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dimethylphenol	ND	376	1500 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Dimethyl phthalate	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	939	3760 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrophenol	ND	939	3760 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrotoluene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,6-Dinitrotoluene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-octylphthalate	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Fluoranthene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Fluorene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobenzene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobutadiene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorocyclopentadiene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachloroethane	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Isophorone	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylnaphthalene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylphenol	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Methylphenol	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Naphthalene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitroaniline	ND	376	1500 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
3-Nitroaniline	ND	376	1500 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitroaniline	ND	376	1500 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Nitrobenzene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitrophenol	ND	376	1500 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitrophenol	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitrosodiphenylamine	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Pentachlorophenol	ND	376	1500 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

SS-01-4-5 1506117-02 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories, LL	C					
Semivolatile Organic Compounds by GC/MS									
Phenanthrene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Phenol	ND	93.9	376 ug/Kg dry	, 1	5F18004	06/22/15	06/25/15	SW8270D	U
Pyrene	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,6-Trichlorophenol	ND	93.9	376 ug/Kg dry	, 1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,5-Trichlorophenol	ND	93.9	376 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		71.3 %	45-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2-Fluorophenol		64.6 %	35-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Nitrobenzene-d5		63.0 %	35-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Phenol-d6		65.9 %	40-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Terphenyl-d14		66.4 %	30-125		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		84.6 %	35-125		5F18004	06/22/15	06/25/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 8 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-04-0-1 1506117-03 (Solid)

Result 54	MDL Empirica	Limit l Laborato		Dilution	Batch	Prepared	Analyzed	Method	Note
54	Empirica	l Laborato	ries, LL	C					
54			,	C					
54									
	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
ND	1.73	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
ND	1.04	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
ND	0.347	1.73 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
ND	0.347	1.73 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
5.22	0.694	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
20.4	1.39	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
4.72	0.520	1.73 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
3.16	1.04	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
ND	1.04	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
ND	0.347	3.47 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
ND	1.04	2.77 n	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
47.8	1.73	6.94 n	ng/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
ND	0.0211	0.0535 n	ng/Kg dry	1	5F15935	06/15/15	06/17/15	SW7471B	
S									
ND	742	2970 ι	ug/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742	2970 ι	ug/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742	2970 ι	ug/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742	2970 ι	ug/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742			5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742			5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742			5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742			5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742				5F18004	06/22/15	06/25/15	SW8270D	
				5	5F18004	06/22/15	06/25/15	SW8270D	
				5	5F18004	06/22/15	06/25/15	SW8270D	
ND	742			5	5F18004	06/22/15	06/25/15	SW8270D	
						06/22/15			
						06/22/15			
						06/22/15			
	ND ND ND 5.22 20.4 4.72 3.16 ND	ND 1.04 ND 0.347 ND 0.347 S.22 0.694 20.4 1.39 4.72 0.520 3.16 1.04 ND 1.04 ND 0.347 ND 1.04 47.8 1.73 ND 742	ND 1.04 3.47 1 ND 0.347 1.73 1 ND 0.347 1.73 1 ND 0.347 1.73 1 5.22 0.694 3.47 1 20.4 1.39 3.47 1 4.72 0.520 1.73 1 3.16 1.04 3.47 1 ND 1.04 3.47 1 ND 1.04 2.77 1 47.8 1.73 6.94 1 ND 0.0211 0.0535 1 IS ND 742 2970 1	ND 1.04 3.47 mg/Kg dry ND 0.347 1.73 mg/Kg dry ND 0.347 1.73 mg/Kg dry 5.22 0.694 3.47 mg/Kg dry 20.4 1.39 3.47 mg/Kg dry 4.72 0.520 1.73 mg/Kg dry 3.16 1.04 3.47 mg/Kg dry ND 1.04 3.47 mg/Kg dry ND 1.04 3.47 mg/Kg dry ND 1.04 2.77 mg/Kg dry 47.8 1.73 6.94 mg/Kg dry ND 742 2970 ug/Kg dry	ND 1.04 3.47 mg/Kg dry 1 ND 0.347 1.73 mg/Kg dry 1 ND 0.347 1.73 mg/Kg dry 1 5.22 0.694 3.47 mg/Kg dry 1 20.4 1.39 3.47 mg/Kg dry 1 4.72 0.520 1.73 mg/Kg dry 1 ND 1.04 3.47 mg/Kg dry 1 ND 1.04 2.77 mg/Kg dry 1 47.8 1.73 6.94 mg/Kg dry 1 ND 742 2970 ug/Kg dry 5	ND 1.04 3.47 mg/Kg dry 1 5F16727 ND 0.347 1.73 mg/Kg dry 1 5F16727 ND 0.347 1.73 mg/Kg dry 1 5F16727 5.22 0.694 3.47 mg/Kg dry 1 5F16727 20.4 1.39 3.47 mg/Kg dry 1 5F16727 4.72 0.520 1.73 mg/Kg dry 1 5F16727 3.16 1.04 3.47 mg/Kg dry 1 5F16727 ND 1.04 2.77 mg/Kg dry 5 5F16727 ND 742 2970 ug/Kg dry 5 5F18004	ND 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 ND 0.347 1.73 mg/Kg dry 1 5F16727 06/16/15 S.22 0.694 3.47 mg/Kg dry 1 5F16727 06/16/15 S.22 0.694 3.47 mg/Kg dry 1 5F16727 06/16/15 S.22 0.694 3.47 mg/Kg dry 1 5F16727 06/16/15 S.22 0.520 1.73 mg/Kg dry 1 5F16727 06/16/15 A.72 0.520 1.73 mg/Kg dry 1 5F16727 06/16/15 3.16 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 ND 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 ND 0.347 3.47 mg/Kg dry 1 5F16727 06/16/15 ND 0.347 3.47 mg/Kg dry 1 5F16727 06/16/15 ND 1.04 2.77 mg/Kg dry 1 5F16727 06/16/15 ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 ND	ND 1.04 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 0.347 1.73 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 0.347 1.73 mg/kg dry 1 5F16727 06/16/15 06/18/15 5.22 0.694 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 20.4 1.39 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 4.72 0.520 1.73 mg/kg dry 1 5F16727 06/16/15 06/18/15 3.16 1.04 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 0.347 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 3.47 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 2.77 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 2.77 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 2.77 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 2.77 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 2.77 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 1.04 2.79 mg/kg dry 1 5F16727 06/16/15 06/18/15 ND 742 2970 ug/kg dry 5 5F18004 06/22/15 06/25/15 ND 742 2970 ug/kg	ND 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 0.347 1.73 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 0.347 1.73 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C 5.22 0.694 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C 20.4 1.39 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C 4.72 0.520 1.73 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C 3.16 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 3.47 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 2.77 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 2.77 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 2.77 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 1.04 2.79 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C A7.8 1.73 6.94 mg/Kg dry 1 5F16727 06/16/15 06/18/15 SW6010C ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970 ug/Kg dry 5 5F18004 06/22/15 06/25/15 SW8270D ND 742 2970

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

Report Date: 06/29/2015

Page 9 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert Reported:

06/29/2015 15:37

SS-04-0-1 1506117-03 (Solid)

Reporting

Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratori	ies, LL	C					
Semivolatile Organic Compounds by G	C/MS									
2-Chloronaphthalene	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chlorophenol	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Chrysene	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenz(a,h)anthracene	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenzofuran	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-butylphthalate	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dichlorophenol	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Diethylphthalate	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dimethylphenol	ND	2970	11800 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Dimethyl phthalate	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	7420	29700 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrophenol	ND	7420	29700 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrotoluene	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,6-Dinitrotoluene	ND	742	2970 ug/			5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-octylphthalate	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Fluoranthene	ND	742	2970 ug/		5	5F18004	06/22/15	06/25/15	SW8270D	U
Fluorene	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobenzene	ND	742	2970 ug/	/Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobutadiene	ND	742	2970 ug/		5	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorocyclopentadiene	ND	742	2970 ug/			5F18004	06/22/15	06/25/15	SW8270D	U
Hexachloroethane	ND	742	2970 ug/			5F18004	06/22/15	06/25/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	742	2970 ug/			5F18004	06/22/15	06/25/15	SW8270D	U
Isophorone	ND	742	2970 ug		5	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylnaphthalene	ND	742	2970 ug		5	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylphenol	ND	742	2970 ug/		5	5F18004	06/22/15	06/25/15	SW8270D	U
4-Methylphenol	ND	742	2970 ug		5	5F18004	06/22/15	06/25/15	SW8270D	U
Naphthalene	ND	742	2970 ug		5	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitroaniline	ND	2970	11800 ug		5	5F18004	06/22/15	06/25/15	SW8270D	U
3-Nitroaniline	ND	2970	11800 ug		5	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitroaniline	ND	2970	11800 ug			5F18004	06/22/15	06/25/15	SW8270D	U
Nitrobenzene	ND	742	2970 ug			5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitrophenol	ND	2970	11800 ug			5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitrophenol	ND	742	2970 ug			5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitrosodiphenylamine	ND	742	2970 ug/			5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	742	2970 ug/			5F18004	06/22/15	06/25/15	SW8270D	U
Pentachlorophenol	ND	2970	11800 ug/			5F18004	06/22/15	06/25/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

SS-04-0-1 1506117-03 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical I	Laboratorie	es, LL	C					
Semivolatile Organic Compounds by GC/MS										
Phenanthrene	ND	742	2970 ug/l	Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Phenol	ND	742	2970 ug/l	Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Pyrene	ND	742	2970 ug/l	Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,6-Trichlorophenol	ND	742	2970 ug/l	Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,5-Trichlorophenol	ND	742	2970 ug/	Kg dry	5	5F18004	06/22/15	06/25/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		48.8 %	4.	5-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2-Fluorophenol		43.2 %	3.	5-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Nitrobenzene-d5		40.2 %	3.	5-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Phenol-d6		43.3 %	4	0-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Terphenyl-d14		45.4 %	3	0-125		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		56.5 %	3.	5-125		5F18004	06/22/15	06/25/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 11 of 53

225 Schilling Circle, Suite 400

Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 15:37

Hunt Valley MD, 21031

SS-04-4-5 1506117-04 (Solid)

Project Manager: Jim Hulbert

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborator	ies, LL	C					
Classical Chemistry Parameters										
% Solids	75	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.31	2.63 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	-
Arsenic	ND	0.789	2.63 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Beryllium	ND	0.263	1.31 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	-
Cadmium	ND	0.263	1.31 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Chromium	3.62	0.526	2.63 mg	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Copper	7.52	1.05	2.63 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Lead	5.59	0.394	1.31 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Nickel	2.55	0.789	2.63 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Selenium	ND	0.789	2.63 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	1
Silver	ND	0.263	2.63 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	1
Thallium	ND	0.789	2.10 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Zinc	15.2	1.31	5.26 mg	g/Kg dry	, 1	5F16727	06/16/15	06/18/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0158	0.0402 mg	g/Kg dry	1	5F15935	06/15/15	06/17/15	SW7471B	
Semivolatile Organic Compounds by G	GC/MS									
Acenaphthene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Acenaphthylene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Acetophenone	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	-
Anthracene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	
Atrazine	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Benzaldehyde	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Benzo(a)anthracene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Benzo(a)pyrene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Benzo(b)fluoranthene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Benzo(g,h,i)perylene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Benzo(k)fluoranthene	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
1,1-Biphenyl	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
4-Bromophenyl-phenylether	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Butylbenzylphthalate	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Caprolactam	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	1
Carbazole	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	-
4-Chloro-3-methylphenol	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	
4-Chloroaniline	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	
Bis(2-chloroethoxy)methane	ND	1060	4250 ug	g/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	
Bis(2-chloroethyl)ether	ND	1060	4250 ug			5F18004	06/22/15	06/25/15	SW8270D	
2,2'-Oxybis-1-chloropropane	ND	1060	4250 ug			5F18004	06/22/15	06/25/15	SW8270D	1

 ${\tt EMPIRICAL\ LABORATORIES,\ LLC}$

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-04-4-5 1506117-04 (Solid)

Reporting

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratories, LI	LC					
Semivolatile Organic Compounds by	GC/MS								
2-Chloronaphthalene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chlorophenol	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Chrysene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenz(a,h)anthracene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenzofuran	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-butylphthalate	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dichlorophenol	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Diethylphthalate	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dimethylphenol	ND	4250	17000 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Dimethyl phthalate	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	10600	42500 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrophenol	ND	10600	42500 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrotoluene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2,6-Dinitrotoluene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-octylphthalate	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Fluoranthene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Fluorene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobenzene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobutadiene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorocyclopentadiene	ND	1060	4250 ug/Kg dr	-	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachloroethane	ND	1060	4250 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	1060	4250 ug/Kg dr	-	5F18004	06/22/15	06/25/15	SW8270D	U
Isophorone	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylnaphthalene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylphenol	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Methylphenol	ND	1060	4250 ug/Kg dr	-	5F18004	06/22/15	06/25/15	SW8270D	U
Naphthalene	ND	1060	4250 ug/Kg dr	y 10	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitroaniline	ND	4250	17000 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
3-Nitroaniline	ND	4250	17000 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitroaniline	ND	4250	17000 ug/Kg dr	-	5F18004	06/22/15	06/25/15	SW8270D	U
Nitrobenzene	ND	1060	4250 ug/Kg dr	-	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitrophenol	ND	4250	17000 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitrophenol	ND	1060	4250 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitrosodiphenylamine	ND	1060	4250 ug/Kg dr	•	5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	1060	4250 ug/Kg dr	•	5F18004	06/22/15	06/25/15	SW8270D	U
Pentachlorophenol	ND	4250	17000 ug/Kg dr	-	5F18004	06/22/15	06/25/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Surrogate: 2,4,6-Tribromophenol

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-04-4-5 1506117-04 (Solid)

			Reporting	g						
Analyte	Result	MDL	Limi	t Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborato	ories, LL	C					
Semivolatile Organic Compounds by GC/MS										
Phenanthrene	ND	1060	4250	ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Phenol	ND	1060	4250	ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Pyrene	ND	1060	4250	ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,6-Trichlorophenol	ND	1060	4250	ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,5-Trichlorophenol	ND	1060	4250	ug/Kg dry	10	5F18004	06/22/15	06/25/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		65.2 %		45-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2-Fluorophenol		53.1 %		35-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Nitrobenzene-d5		54.4 %		35-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Phenol-d6		55.8 %		40-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Terphenyl-d14		64.2 %		30-125		5F18004	06/22/15	06/25/15	SW8270D	

35-125

77.4 %

5F18004

06/22/15 06/25/15

SW8270D

X

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 14 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 15:37

SS-05-0-1 1506117-05 (Solid)

Project Manager: Jim Hulbert

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirica	l Laborator	ies, LL	C					
Classical Chemistry Parameters										
% Solids	78	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.19	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Arsenic	1.02	0.714	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Beryllium	ND	0.238	1.19 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Cadmium	ND	0.238	1.19 mg	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Chromium	5.32	0.476	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Copper	2.60	0.952	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Lead	8.56	0.357	1.19 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Nickel	1.94	0.714	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Selenium	ND	0.714	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Silver	ND	0.238	2.38 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Γhallium	ND	0.714	1.90 mg	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Zinc	8.44	1.19	4.76 m	g/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0147	0.0374 m	g/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	
Semivolatile Organic Compounds by (GC/MS									
Acenaphthene	ND	103	413 սչ	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Acenaphthylene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Acetophenone	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Anthracene	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
					1	5F18004	06/22/15	06/05/15	SW8270D	
Atrazine	ND	103	413 ug	g/Kg dry	1	D1 1000.	00/22/13	06/25/15	3 W 02/UD	
	ND ND	103 103		g/Kg dry g/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	
Benzaldehyde			413 ug		1					
Benzaldehyde Benzo(a)anthracene	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene	ND ND	103 103	413 ug 413 ug 413 ug	g/Kg dry g/Kg dry	1 1 1	5F18004 5F18004	06/22/15 06/22/15	06/25/15 06/25/15	SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND	103 103 103	413 ug 413 ug 413 ug 413 ug	g/Kg dry g/Kg dry g/Kg dry	1 1 1	5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND ND ND ND	103 103 103 103	413 ug 413 ug 413 ug 413 ug 413 ug	g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1	5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ND ND ND	103 103 103 103 103	413 ug 413 ug 413 ug 413 ug 413 ug 413 ug	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ND ND ND ND	103 103 103 103 103 103	413 ug	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 1-Bromophenyl-phenylether	ND ND ND ND ND ND	103 103 103 103 103 103 103	413 ug	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl I-Bromophenyl-phenylether Butylbenzylphthalate	ND	103 103 103 103 103 103 103	413 ug	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam	ND	103 103 103 103 103 103 103 103	413 ug	g/Kg dry	1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole	ND N	103 103 103 103 103 103 103 103 103	413 ug	g/Kg dry	1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Carpolactam Carbazole 4-Chloro-3-methylphenol	ND N	103 103 103 103 103 103 103 103 103 103	413 ug	g/Kg dry	1 1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline	ND N	103 103 103 103 103 103 103 103 103 103	413 ug	g/Kg dry	1 1 1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1-Biphenyl 4-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ND N	103 103 103 103 103 103 103 103 103 103	413 ug	g/Kg dry	1 1 1 1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-05-0-1 1506117-05 (Solid)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laborator	ies, LL	C		· · ·			-
Semivolatile Organic Compounds by GC/MS										
2-Chloronaphthalene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chlorophenol	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	103		g/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	U
Chrysene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenz(a,h)anthracene	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenzofuran	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-butylphthalate	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dichlorophenol	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Diethylphthalate	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dimethylphenol	ND	413	1650 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Dimethyl phthalate	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	1030	4130 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrophenol	ND	1030	4130 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrotoluene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,6-Dinitrotoluene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-octylphthalate	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Fluoranthene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Fluorene	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobenzene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobutadiene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorocyclopentadiene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachloroethane	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Isophorone	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylnaphthalene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylphenol	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Methylphenol	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Naphthalene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitroaniline	ND	413	1650 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
3-Nitroaniline	ND	413	1650 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitroaniline	ND	413	1650 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Nitrobenzene	ND	103	413 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitrophenol	ND	413	1650 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitrophenol	ND	103	413 ug	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitrosodiphenylamine	ND	103		g/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	103		g/Kg dry		5F18004	06/22/15	06/25/15	SW8270D	U
Pentachlorophenol	ND	413	1650 uş	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-05-0-1 1506117-05 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories, LLC	C					
Semivolatile Organic Compounds by GC/N	MS								
Phenanthrene	ND	103	413 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Phenol	ND	103	413 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Pyrene	ND	103	413 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,6-Trichlorophenol	ND	103	413 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,5-Trichlorophenol	ND	103	413 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		65.9 %	45-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2-Fluorophenol		58.6 %	35-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Nitrobenzene-d5		57.4 %	35-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Phenol-d6		61.1 %	40-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Terphenyl-d14		64.4 %	30-125		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		80.3 %	35-125		5F18004	06/22/15	06/25/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 17 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-05-4-5 1506117-06 (Solid)

Analyte	Result	MDL	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratoi	ries, LL	С					
Classical Chemistry Parameters										
% Solids	82	1.0	1.0	%	1	5F15929	06/15/15	06/16/15	SM2540B	
Metals (Total) by ICP										
Antimony	ND	1.12	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	τ
Arsenic	1.18	0.674	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Beryllium	0.257	0.225	1.12 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Cadmium	ND	0.225	1.12 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	τ
Chromium	13.0	0.449	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Copper	3.69	0.898	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Lead	6.70	0.337	1.12 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
Nickel	3.90	0.674	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	
elenium	ND	0.674	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	τ
Silver	ND	0.225	2.25 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	Ţ
Thallium	ND	0.674	1.80 m	ng/Kg dry	1	5F16727	06/16/15	06/18/15	SW6010C	ι
Cinc	9.04	1.12		ng/Kg dry		5F16727	06/16/15	06/18/15	SW6010C	
Mercury by CVAA										
Mercury	ND	0.0159	0.0404 m	ng/Kg dry	1	5F15934	06/15/15	06/17/15	SW7471B	Ţ
Semivolatile Organic Compounds by (GC/MS									
Acenaphthene	ND	98.3	393 u	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	Ţ
Acenaphthylene	ND	98.3	393 u	g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	Ţ
					1	5F18004	06/22/15	06/25/15	SW8270D	1
Acetophenone	ND	98.3	393 u	g/Kg dry					SW 82/0D	
•	ND ND	98.3 98.3		g/Kg dry g/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D SW8270D	Ţ
Anthracene			393 u		1 1	5F18004 5F18004				
Anthracene Atrazine	ND	98.3	393 u 393 u	g/Kg dry			06/22/15	06/25/15	SW8270D	τ
Anthracene Atrazine Benzaldehyde	ND ND	98.3 98.3	393 u 393 u 393 u	g/Kg dry g/Kg dry	1	5F18004	06/22/15 06/22/15	06/25/15 06/25/15	SW8270D SW8270D	Ţ
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene	ND ND ND	98.3 98.3 98.3	393 u 393 u 393 u 393 u	g/Kg dry g/Kg dry g/Kg dry	1	5F18004 5F18004	06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D	i i
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene	ND ND ND ND	98.3 98.3 98.3 98.3	393 u 393 u 393 u 393 u 393 u	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1	5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D	! ! !
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	98.3 98.3 98.3 98.3	393 u 393 u 393 u 393 u 393 u 393 u	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1	5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D	; ; ; ;
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND ND ND ND ND	98.3 98.3 98.3 98.3 98.3	393 u 393 u 393 u 393 u 393 u 393 u	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	1 1 1 1 1
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND	98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u 393 u 393 u 393 u 393 u 393 u 393 u	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	t t t t
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene JBiphenyl	ND	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u 393 u 393 u 393 u 393 u 393 u 393 u 393 u	g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry g/Kg dry	1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	1 1 1 1 1 1
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene J-Biphenyl Bromophenyl-phenylether	ND	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry g/Kg dry	1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	1 1 1 1 1 1 1 1
canthracene carazine denzo(a)anthracene denzo(a)pyrene denzo(b)fluoranthene denzo(g,h,i)perylene denzo(k)fluoranthene denzo(k)fluoranthene denzo(k)fluoranthene denzo(k)fluoranthene denzo(k)fluoranthene denzo(k)fluoranthene	ND N	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry	1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene JBiphenyl -Bromophenyl-phenylether Butylbenzylphthalate	ND N	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry	1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene J-Biphenyl Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole	ND N	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry	1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Anthracene Atrazine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene JBiphenyl -Bromophenyl-phenylether Butylbenzylphthalate Caprolactam CarbazoleChloro-3-methylphenol	ND N	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry	1 1 1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Anthracene Atrazine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene ,1-Biphenyl -Bromophenyl-phenylether Butylbenzylphthalate Caprolactam CarbazoleChloro-3-methylphenol	ND N	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry		5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	
Actophenone Anthracene Atrazine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene I,1-Biphenyl I-Bromophenyl-phenylether Butylbenzylphthalate Caprolactam Carbazole I-Chloro-3-methylphenol I-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ND N	98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3	393 u	g/Kg dry	1 1 1 1 1 1 1 1 1 1 1 1	5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004 5F18004	06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15 06/22/15	06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15 06/25/15	SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

SS-05-4-5 1506117-06 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laboratories, LI	LC					
Semivolatile Organic Compounds by GC/MS									
2-Chloronaphthalene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Chlorophenol	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Chlorophenyl phenyl ether	ND	98.3	393 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
Chrysene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenz(a,h)anthracene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Dibenzofuran	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-butylphthalate	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
3,3'-Dichlorobenzidine	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dichlorophenol	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Diethylphthalate	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dimethylphenol	ND	393	1570 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Dimethyl phthalate	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
4,6-Dinitro-2-methylphenol	ND	983	3930 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrophenol	ND	983	3930 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4-Dinitrotoluene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2,6-Dinitrotoluene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Di-n-octylphthalate	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Bis(2-ethylhexyl)phthalate	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Fluoranthene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Fluorene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobenzene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorobutadiene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachlorocyclopentadiene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Hexachloroethane	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Indeno(1,2,3-cd)pyrene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Isophorone	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylnaphthalene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Methylphenol	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Methylphenol	ND	98.3	393 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
Naphthalene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitroaniline	ND	393	1570 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
3-Nitroaniline	ND	393	1570 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitroaniline	ND	393	1570 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
Nitrobenzene	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
4-Nitrophenol	ND	393	1570 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
2-Nitrophenol	ND	98.3	393 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitrosodiphenylamine	ND	98.3	393 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
N-Nitroso-di-n-propylamine	ND	98.3	393 ug/Kg dr		5F18004	06/22/15	06/25/15	SW8270D	U
Pentachlorophenol	ND	393	1570 ug/Kg dr	y 1	5F18004	06/22/15	06/25/15	SW8270D	U

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

SS-05-4-5 1506117-06 (Solid)

			Reporting						
Analyte	Result	MDL	Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aboratories, LL	C					
Semivolatile Organic Compounds by GC/MS									
Phenanthrene	ND	98.3	393 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Phenol	ND	98.3	393 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Pyrene	ND	98.3	393 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,6-Trichlorophenol	ND	98.3	393 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
2,4,5-Trichlorophenol	ND	98.3	393 ug/Kg dry	1	5F18004	06/22/15	06/25/15	SW8270D	U
Surrogate: 2-Fluorobiphenyl		73.6 %	45-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2-Fluorophenol		67.0 %	35-105		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Nitrobenzene-d5		65.5 %	35-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Phenol-d6		68.7 %	40-100		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: Terphenyl-d14		69.5 %	30-125		5F18004	06/22/15	06/25/15	SW8270D	
Surrogate: 2,4,6-Tribromophenol		89.4 %	35-125		5F18004	06/22/15	06/25/15	SW8270D	X

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 20 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Reported: 06/29/2015 15:37

GW-03 1506117-07 (Water)

Project Manager: Jim Hulbert

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirica	l Laborato	ries, LI	.C					
Metals (Dissolved) by ICP										
Antimony	ND	5.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Arsenic	3.84	3.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Beryllium	ND	1.00	5.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Cadmium	ND	1.00	5.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Chromium	ND	2.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Copper	ND	4.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Lead	4.77	1.50	5.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Nickel	ND	3.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Selenium	ND	3.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Silver	ND	1.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Thallium	ND	3.00	8.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Zinc	ND	5.00	20.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	U
Mercury (Dissolved) by CVAA										
Mercury	ND	0.0800	0.200	ug/L	1	5F09023	06/18/15	06/18/15	SW7470A	NU
Volatile Organic Compounds by GC/MS										
Acetone	31.4	5.00	20.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	Г
Benzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Bromodichloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Bromoform	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Bromomethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
2-Butanone	ND	5.00	20.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Carbon disulfide	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	τ
Carbon tetrachloride	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	τ
Chlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	υ
Chloroethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Chloroform	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Chloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Cyclohexane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Dibromochloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dibromo-3-chloropropane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dibromoethane (EDB)	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,3-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,4-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Dichlorodifluoromethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

GW-03 1506117-07 (Water)

			Reporting	5						
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical L	aborato	ries, LI	.C					
Volatile Organic Compounds by GC/MS										
cis-1,2-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.50	10.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	NQUX
4-Methyl-2-pentanone	ND	2.50	10.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Styrene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Toluene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		99.7 %		75-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		101 %		85-115		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		98.3 %		70-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		100 %		85-120		5F15917	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 22 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

GW-04 1506117-08 (Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Empirical	Laborator	ies, LI	.C					
Metals (Dissolved) by ICP										
Antimony	ND	5.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Arsenic	ND	3.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Beryllium	ND	1.00	5.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Cadmium	ND	1.00	5.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Chromium	ND	2.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Copper	ND	4.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Lead	ND	1.50	5.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Nickel	ND	3.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Selenium	ND	3.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Silver	ND	1.00	10.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Thallium	ND	3.00	8.00	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	1
Zine	ND	5.00	20.0	ug/L	1	5F19005	06/19/15	06/22/15	SW6010C	
Mercury (Dissolved) by CVAA										
Mercury	ND	0.0800	0.200	ug/L	1	5F09023	06/18/15	06/18/15	SW7470A	N
Volatile Organic Compounds by GC/MS										
Acetone	30.6	5.00	20.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	1
Benzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Bromodichloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Bromoform	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Bromomethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	1
2-Butanone	ND	5.00	20.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Carbon disulfide	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Carbon tetrachloride	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Chlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Chloroethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Chloroform	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Chloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Cyclohexane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Dibromochloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,2-Dibromo-3-chloropropane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,2-Dibromoethane (EDB)	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,2-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,3-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,4-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
Dichlorodifluoromethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,1-Dichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,2-Dichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	
1,1-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	1

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

GW-04 1506117-08 (Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical 1	Laborato	ries, LL	ı.C					
Volatile Organic Compounds by GC/MS										
cis-1,2-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.50	10.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	QUX
4-Methyl-2-pentanone	ND	2.50	10.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Styrene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Toluene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		99.4 %		75-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		100 %		85-115		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		103 %		70-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		101 %		85-120		5F15917	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 24 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert Reported:

06/29/2015 15:37

DUP-GW-01 1506117-09 (Water)

Reporting

Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laborator	ies, LI	.C					
Volatile Organic Compounds by GC/MS										
Acetone	49.0	5.00	20.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	D
Benzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Bromodichloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Bromoform	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Bromomethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
2-Butanone	ND	5.00	20.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Carbon disulfide	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Carbon tetrachloride	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Chlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Chloroethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Chloroform	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Chloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Cyclohexane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Dibromochloromethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dibromo-3-chloropropane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dibromoethane (EDB)	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,3-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,4-Dichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Dichlorodifluoromethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	2.50	10.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methylene chloride	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl Acetate	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	QUX
4-Methyl-2-pentanone	ND	2.50	10.0	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND ND	0.500	2.00	ug/L ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Styrene	ND ND	0.500	2.00	ug/L ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND ND	0.500	2.00	ug/L ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Tetrachloroethene	ND ND	0.500	2.00	ug/L ug/L	2	5F15917	06/15/15	06/15/15	SW8260B SW8260B	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

DUP-GW-01 1506117-09 (Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical l	Laborato	ries, LI	LC					
Volatile Organic Compounds by GC/MS										
Toluene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	1.00	4.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	0.500	2.00	ug/L	2	5F15917	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		99.0 %		75-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		101 %		85-115		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		99.3 %		70-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		101 %		85-120		5F15917	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 26 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken
Project Number: EAE_Tyson

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

TB-01 1506117-10 (Water)

Reporting

Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical	Laborator	ies, LI	.C					
Volatile Organic Compounds by GC/MS										
Acetone	ND	2.50	10.0	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Benzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Bromodichloromethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Bromoform	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Bromomethane	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
2-Butanone	ND	2.50	10.0	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Carbon disulfide	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Carbon tetrachloride	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Chlorobenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Chloroethane	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Chloroform	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Chloromethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Cyclohexane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Dibromochloromethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dibromo-3-chloropropane	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dibromoethane (EDB)	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichlorobenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,3-Dichlorobenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,4-Dichlorobenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Dichlorodifluoromethane	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloroethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,1-Dichloroethene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
cis-1,2-Dichloroethene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,2-Dichloroethene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,2-Dichloropropane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
cis-1,3-Dichloropropene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
trans-1,3-Dichloropropene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Ethylbenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
2-Hexanone	ND	1.25	5.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Isopropylbenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Methylene chloride	0.797	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	J
Methyl Acetate	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Methylcyclohexane	ND	0.250	1.00	ug/L ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	QUX
4-Methyl-2-pentanone	ND	1.25	5.00	ug/L ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Methyl t-Butyl Ether	ND ND	0.250	1.00	ug/L ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Styrene	ND ND	0.250	1.00	ug/L ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2,2-Tetrachloroethane	ND ND	0.250	1.00	ug/L ug/L	1	5F15917	06/15/15	06/15/15	SW8260B SW8260B	U
Tetrachloroethene	ND ND	0.250	1.00	ug/L ug/L	1	5F15917	06/15/15	06/15/15	SW8260B SW8260B	U

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

TB-01 1506117-10 (Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Empirical 1	Laborato	ries, LI	LC					
Volatile Organic Compounds by GC/MS										
Toluene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,2,4-Trichlorobenzene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloroethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,1-Trichloroethane	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Trichloroethene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Trichlorofluoromethane	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Vinyl chloride	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
m,p-Xylene	ND	0.500	2.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
o-Xylene	ND	0.250	1.00	ug/L	1	5F15917	06/15/15	06/15/15	SW8260B	U
Surrogate: Bromofluorobenzene		100 %		75-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Dibromofluoromethane		97.3 %		85-115		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: 1,2-Dichloroethane-d4		99.4 %		70-120		5F15917	06/15/15	06/15/15	SW8260B	
Surrogate: Toluene-d8		102 %		85-120		5F15917	06/15/15	06/15/15	SW8260B	

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 28 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

Metals (Dissolved) by ICP - Quality Control **Empirical Laboratories, LLC**

Analyta	D1	MDL	Reporting	I In:4-	Spike	Source	0/DEC	%REC	DDD	RPD	Not
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F19005											
Blank (5F19005-BLK1)					pared: 06/1	9/2015 An	alyzed: 06/	/22/2015			
Antimony	ND	5.00	10.0	ug/L							
Arsenic	ND	3.00	10.0	ug/L							
Beryllium	ND	1.00	5.00	ug/L							
Cadmium	ND	1.00	5.00	ug/L							
Chromium	ND	2.00	10.0	ug/L							
Copper	ND	4.00	10.0	ug/L							
Lead	ND	1.50	5.00	ug/L							
Nickel	ND	3.00	10.0	ug/L							
Selenium	ND	3.00	10.0	ug/L							
Silver	ND	1.00	10.0	ug/L							
Thallium	ND	3.00	8.00	ug/L							
Zinc	ND	5.00	20.0	ug/L							
LCS (5F19005-BS1)				Prep	oared: 06/1	9/2015 An	alyzed: 06/	/22/2015			
Antimony	251.5	5.00	10.0	ug/L	250.0		101	80-120			
Arsenic	253.6	3.00	10.0	ug/L	250.0		101	80-120			
Beryllium	50.82	1.00	5.00	ug/L	50.00		102	80-120			
Cadmium	136.4	1.00	5.00	ug/L	125.0		109	80-120			
Chromium	211.0	2.00	10.0	ug/L	200.0		106	80-120			
Copper	270.0	4.00	10.0	ug/L	250.0		108	80-120			
Lead	274.4	1.50	5.00	ug/L	250.0		110	80-120			
Nickel	518.7	3.00	10.0	ug/L	500.0		104	80-120			
Selenium	258.1	3.00	10.0	ug/L	250.0		103	80-120			
Silver	263.5	1.00	10.0	ug/L	250.0		105	80-120			
Thallium	257.9	3.00	8.00	ug/L	250.0		103	80-120			
Zinc	520.9	5.00	20.0	ug/L	500.0		104	80-120			
Matrix Spike (5F19005-MS1)		Source: 150	06117-07	Prep	pared: 06/1	9/2015 An	alyzed: 06/	22/2015			
Antimony	252.5	5.00	10.0	ug/L	250.0	ND	101	80-120			
Arsenic	253.9	3.00	10.0	ug/L	250.0	3.841	100	80-120			
Beryllium	49.73	1.00	5.00	ug/L	50.00	ND	99.5	80-120			
Cadmium	135.5	1.00	5.00	ug/L	125.0	ND	108	80-120			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Analyte

Chromium

Copper

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert **Reported:** 06/29/2015 15:37

RPD

Limit

Notes

RPD

Metals (Dissolved) by ICP - Quality Control

Empirical Laboratories, LLC

Units

Level

Source

Result

%REC

%REC

Limits

Reporting

Limit

MDL

Result

198.3

254.4

267.5

509.2

254.9

250.9

246.6

525.5

2.00

4.00

1.50

3.00

3.00

1.00

3.00

5.00

Batch 5F19005											
Matrix Spike (5F19005-MS1)		Source: 15061	17-07	Prep	oared: 06/1	9/2015 Ana	alyzed: 06	/22/2015			
Chromium	200.8	2.00	10.0	ug/L	200.0	ND	100	80-120			
Copper	259.9	4.00	10.0	ug/L	250.0	ND	104	80-120			
Lead	269.0	1.50	5.00	ug/L	250.0	4.767	106	80-120			
Nickel	512.4	3.00	10.0	ug/L	500.0	ND	102	80-120			
Selenium	255.9	3.00	10.0	ug/L	250.0	ND	102	80-120			
Silver	254.5	1.00	10.0	ug/L	250.0	ND	102	80-120			
Thallium	245.1	3.00	8.00	ug/L	250.0	ND	98.0	80-120			
Zinc	528.7	5.00	20.0	ug/L	500.0	ND	106	80-120			
Matrix Spike Dup (5F19005-MSD1)		Source: 15061	17-07	Prep	oared: 06/19	9/2015 Ana	alyzed: 06	/22/2015			
Antimony	252.4	5.00	10.0	ug/L	250.0	ND	101	80-120	0.0277	20	
Arsenic	252.5	3.00	10.0	ug/L	250.0	3.841	99.5	80-120	0.557	20	
Beryllium	49.90	1.00	5.00	ug/L	50.00	ND	99.8	80-120	0.325	20	
Cadmium	134.9	1.00	5.00	ug/L	125.0	ND	108	80-120	0.451	20	

10.0

10.0

5.00

10.0

10.0

10.0

8.00

20.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

200.0

250.0

250.0

500.0

250.0

250.0

250.0

500.0

ND

ND

4.767

ND

ND

ND

ND

ND

99.2

102

105

102

102

100

98.6

105

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

1.25

2.13

0.563

0.625

0.392

1.43

0.606

0.611

20

20

20

20

20

20

20

20

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 30 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

Mercury (Dissolved) by CVAA - Quality Control

Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 5F09023												_
Blank (5F09023-BLK1)				Prej	oared & Ar	nalyzed: 06	5/18/2015					
Mercury	ND	0.0800	0.200	ug/L							1	U
LCS (5F09023-BS1)				Prej	pared & Ar	nalyzed: 06	5/18/2015					
Mercury	1.981	0.0800	0.200	ug/L	2.000		99.1	80-120				_
Matrix Spike (5F09023-MS3)		Source: 150	6117-07	Prej	pared & Ar	nalyzed: 06	5/18/2015					
Mercury	1.559	0.0800	0.200	ug/L	2.000	ND	78.0	80-120				*
Matrix Spike Dup (5F09023-MSD3)		Source: 150	6117-07	Prej	pared & Ar	nalyzed: 06	5/18/2015					
Mercury	1.527	0.0800	0.200	ug/L	2.000	ND	76.3	80-120	2.09	20		*

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 31 of 53

Project Number: EAE_Tyson
Project Manager: Jim Hulbert

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Reported: 06/29/2015 15:37

RPD

%REC

Metals (Total) by ICP - Quality Control Empirical Laboratories, LLC

Spike

Source

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F16727											
Blank (5F16727-BLK1)				Prepa	red: 06/1	6/2015 Ana	alyzed: 06/	18/2015			
Antimony	ND	1.00	2.00	mg/Kg wet							U
Arsenic	ND	0.600	2.00	mg/Kg wet							U
Beryllium	ND	0.200	1.00	mg/Kg wet							U
Cadmium	ND	0.200	1.00	mg/Kg wet							U
Chromium	ND	0.400	2.00	mg/Kg wet							U
Copper	ND	0.800	2.00	mg/Kg wet							U
Lead	ND	0.300	1.00	mg/Kg wet							U
Nickel	ND	0.600	2.00	mg/Kg wet							U
Selenium	ND	0.600	2.00	mg/Kg wet							U
Silver	ND	0.200	2.00	mg/Kg wet							U
Thallium	ND	0.600	1.60	mg/Kg wet							U
Zinc	ND	1.00	4.00	mg/Kg wet							U
LCS (5F16727-BS1)				Prepa	red: 06/1	6/2015 Ana	alyzed: 06/	18/2015			
Antimony	51.14	1.00	2.00	mg/Kg wet	50.00		102	80-120			
Arsenic	49.17	0.600	2.00	mg/Kg wet	50.00		98.3	80-120			
Beryllium	10.25	0.200	1.00	mg/Kg wet	10.00		103	80-120			
Cadmium	26.18	0.200	1.00	mg/Kg wet	25.00		105	80-120			
Chromium	41.56	0.400	2.00	mg/Kg wet	40.00		104	80-120			
Copper	50.95	0.800	2.00	mg/Kg wet	50.00		102	80-120			
Lead	50.39	0.300	1.00	mg/Kg wet	50.00		101	80-120			
Nickel	100.8	0.600	2.00	mg/Kg wet	100.0		101	80-120			
Selenium	49.94	0.600	2.00	mg/Kg wet	50.00		99.9	80-120			
Silver	50.71	0.200	2.00	mg/Kg wet	50.00		101	80-120			
Thallium	51.09	0.600	1.60	mg/Kg wet	50.00		102	80-120			
Zinc	101.7	1.00	4.00	mg/Kg wet	100.0		102	80-120			

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 32 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson

Reported: 06/29/2015 15:37

Project Manager: Jim Hulbert

Mercury by CVAA - Quality Control

Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15934											
Blank (5F15934-BLK1)				Prep	ared: 06/1	5/2015 An	alyzed: 06/	17/2015			
Mercury	ND	0.0130	0.0330	mg/Kg wet							J
LCS (5F15934-BS1)				Prep	ared: 06/1	5/2015 An	alyzed: 06/	17/2015			
Mercury	0.3156	0.0130	0.0330	mg/Kg wet	0.3333		94.7	80-120			
Batch 5F15935											
Blank (5F15935-BLK1)				Prep	ared: 06/1	5/2015 An	alyzed: 06/	17/2015			
Mercury	ND	0.0130	0.0330	mg/Kg wet							J
LCS (5F15935-BS1)				Prep	ared: 06/1	5/2015 An	alyzed: 06/	17/2015			
Mercury	0.3638	0.0130	0.0330	mg/Kg wet	0.3333		109	80-120			

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 33 of 53

Project: Tyson Chicken
Project Number: EAE_Tyson
Project Manager: Jim Hulbert

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Reported: 06/29/2015 15:37

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

Reporting

			Reporting		Spike	Source		/oKEC		KFD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
Blank (5F15917-BLK1)				Prep	oared & Ar	nalyzed: 06	/15/2015				
Acetone	ND	2.50	10.0	ug/L							
Benzene	ND	0.250	1.00	ug/L							
Bromodichloromethane	ND	0.250	1.00	ug/L							
Bromoform	ND	0.250	1.00	ug/L							
Bromomethane	ND	0.500	2.00	ug/L							
2-Butanone	ND	2.50	10.0	ug/L							
Carbon disulfide	ND	0.250	1.00	ug/L							
Carbon tetrachloride	ND	0.250	1.00	ug/L							
Chlorobenzene	ND	0.250	1.00	ug/L							
Chloroethane	ND	0.500	2.00	ug/L							
Chloroform	ND	0.250	1.00	ug/L							
Chloromethane	ND	0.250	1.00	ug/L							
Cyclohexane	ND	0.250	1.00	ug/L							
Dibromochloromethane	ND	0.250	1.00	ug/L							
1,2-Dibromo-3-chloropropane	ND	0.500	2.00	ug/L							
1,2-Dibromoethane (EDB)	ND	0.250	1.00	ug/L							
1,2-Dichlorobenzene	ND	0.250	1.00	ug/L							
1,3-Dichlorobenzene	ND	0.250	1.00	ug/L							
1,4-Dichlorobenzene	ND	0.250	1.00	ug/L							
Dichlorodifluoromethane	ND	0.500	2.00	ug/L							
1,1-Dichloroethane	ND	0.250	1.00	ug/L							
1,2-Dichloroethane	ND	0.250	1.00	ug/L							
1,1-Dichloroethene	ND	0.250	1.00	ug/L							
cis-1,2-Dichloroethene	ND	0.250	1.00	ug/L							
trans-1,2-Dichloroethene	ND	0.250	1.00	ug/L							
1,2-Dichloropropane	ND	0.250	1.00	ug/L							
cis-1,3-Dichloropropene	ND	0.250	1.00	ug/L							
trans-1,3-Dichloropropene	ND	0.250	1.00	ug/L							
Ethylbenzene	ND	0.250	1.00	ug/L							
2-Hexanone	ND	1.25	5.00	ug/L							

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

Project: Tyson Chicken 225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031 Project Manager: Jim Hulbert

Reported:

RPD

%REC

06/29/2015 15:37

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Spike

Source

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
Blank (5F15917-BLK1)				Prep	ared & Ar	nalyzed: 06	/15/2015				
Isopropylbenzene	ND	0.250	1.00	ug/L							U
Methylene chloride	ND	0.500	2.00	ug/L							U
Methyl Acetate	ND	0.500	2.00	ug/L							U
Methylcyclohexane	ND	0.250	1.00	ug/L							QUX
4-Methyl-2-pentanone	ND	1.25	5.00	ug/L							U
Methyl t-Butyl Ether	ND	0.250	1.00	ug/L							U
Styrene	ND	0.250	1.00	ug/L							U
1,1,2,2-Tetrachloroethane	ND	0.250	1.00	ug/L							U
Tetrachloroethene	ND	0.250	1.00	ug/L							U
Toluene	ND	0.250	1.00	ug/L							U
1,2,4-Trichlorobenzene	ND	0.250	1.00	ug/L							U
1,1,2-Trichloroethane	ND	0.250	1.00	ug/L							U
1,1,1-Trichloroethane	ND	0.250	1.00	ug/L							U
Trichloroethene	ND	0.250	1.00	ug/L							U
Trichlorofluoromethane	ND	0.500	2.00	ug/L							U
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.500	2.00	ug/L							U
Vinyl chloride	ND	0.250	1.00	ug/L							U
m,p-Xylene	ND	0.500	2.00	ug/L							U
o-Xylene	ND	0.250	1.00	ug/L							U
Surrogate: Bromofluorobenzene	29.92			ug/L	30.00		99.7	75-120			
Surrogate: Dibromofluoromethane	28.89			ug/L	30.00		96.3	85-115			
Surrogate: 1,2-Dichloroethane-d4	29.89 30.75			ug/L	30.00 30.00		99.6	70-120 85-120			
Surrogate: Toluene-d8	30.73			ug/L	30.00		102	03-120			
LCS (5F15917-BS1)	98.3	2.50	10.0	Prep ug/L	pared & Ar 100.0	nalyzed: 06	/15/2015 98.3	40-140			
Acetone Benzene	49.6	0.250	1.00	ug/L	50.00		99.2	80-120			
				_							
Bromodichloromethane	48.3	0.250	1.00	ug/L	50.00		96.6	75-120			
Bromoform	45.6	0.250	1.00	ug/L	50.00		91.2	70-130			
Bromomethane	45.2	0.500	2.00	ug/L	50.00		90.4	30-145			
2-Butanone	85.3	2.50	10.0	ug/L	100.0		85.3	30-150			
Carbon disulfide	55.3	0.250	1.00	ug/L	50.00		111	35-160			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

Reporting

			Reporting		Spike	Source		/ortec		KrD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
LCS (5F15917-BS1)				Prep	ared & An	alyzed: 06	/15/2015				
Carbon tetrachloride	46.0	0.250	1.00	ug/L	50.00		92.1	65-140			
Chlorobenzene	51.6	0.250	1.00	ug/L	50.00		103	80-120			
Chloroethane	45.4	0.500	2.00	ug/L	50.00		90.7	60-135			
Chloroform	42.1	0.250	1.00	ug/L	50.00		84.1	65-135			
Chloromethane	45.2	0.250	1.00	ug/L	50.00		90.3	40-125			
Cyclohexane	54.3	0.250	1.00	ug/L	50.00		109	60-130			
Dibromochloromethane	55.5	0.250	1.00	ug/L	50.00		111	60-135			
1,2-Dibromo-3-chloropropane	43.0	0.500	2.00	ug/L	50.00		85.9	50-130			
1,2-Dibromoethane (EDB)	51.2	0.250	1.00	ug/L	50.00		102	80-120			
1,2-Dichlorobenzene	50.1	0.250	1.00	ug/L	50.00		100	70-120			
1,3-Dichlorobenzene	50.6	0.250	1.00	ug/L	50.00		101	75-125			
1,4-Dichlorobenzene	49.5	0.250	1.00	ug/L	50.00		99.1	75-125			
Dichlorodifluoromethane	44.7	0.500	2.00	ug/L	50.00		89.4	30-155			
1,1-Dichloroethane	45.5	0.250	1.00	ug/L	50.00		90.9	70-135			
1,2-Dichloroethane	42.6	0.250	1.00	ug/L	50.00		85.1	70-130			
1,1-Dichloroethene	47.3	0.250	1.00	ug/L	50.00		94.5	70-130			
cis-1,2-Dichloroethene	50.2	0.250	1.00	ug/L	50.00		100	70-125			
trans-1,2-Dichloroethene	48.6	0.250	1.00	ug/L	50.00		97.3	60-140			
1,2-Dichloropropane	49.8	0.250	1.00	ug/L	50.00		99.5	75-125			
cis-1,3-Dichloropropene	53.5	0.250	1.00	ug/L	50.00		107	70-130			
trans-1,3-Dichloropropene	49.9	0.250	1.00	ug/L	50.00		99.9	55-140			
Ethylbenzene	52.9	0.250	1.00	ug/L	50.00		106	75-125			
2-Hexanone	97.6	1.25	5.00	ug/L	100.0		97.6	55-130			
Isopropylbenzene	55.3	0.250	1.00	ug/L	50.00		111	75-125			
Methylene chloride	49.6	0.500	2.00	ug/L	50.00		99.1	55-140			
Methyl Acetate	40.2	0.500	2.00	ug/L	50.00		80.5	55-150			
Methylcyclohexane	62.9	0.250	1.00	ug/L	50.00		126	60-125			
4-Methyl-2-pentanone	86.0	1.25	5.00	ug/L	100.0		86.0	60-135			
Methyl t-Butyl Ether	46.7	0.250	1.00	ug/L	50.00		93.4	65-125			
Styrene	56.5	0.250	1.00	ug/L	50.00		113	65-135			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
LCS (5F15917-BS1)				Prej	pared & An	nalyzed: 06	/15/2015				
1,1,2,2-Tetrachloroethane	43.2	0.250	1.00	ug/L	50.00		86.5	65-130			
Tetrachloroethene	57.2	0.250	1.00	ug/L	50.00		114	45-150			
Toluene	53.4	0.250	1.00	ug/L	50.00		107	75-120			
1,2,4-Trichlorobenzene	53.3	0.250	1.00	ug/L	50.00		107	65-135			
1,1,2-Trichloroethane	51.1	0.250	1.00	ug/L	50.00		102	75-125			
1,1,1-Trichloroethane	43.2	0.250	1.00	ug/L	50.00		86.4	65-130			
Trichloroethene	48.2	0.250	1.00	ug/L	50.00		96.4	70-125			
Trichlorofluoromethane	41.2	0.500	2.00	ug/L	50.00		82.3	60-145			
1,1,2-Trichloro-1,2,2-trifluoroethane	53.3	0.500	2.00	ug/L	50.00		107	60-130			
Vinyl chloride	52.6	0.250	1.00	ug/L	50.00		105	50-145			
m,p-Xylene	107	0.500	2.00	ug/L	100.0		107	75-130			
o-Xylene	49.5	0.250	1.00	ug/L	50.00		99.1	80-120			
 Surrogate: Bromofluorobenzene	30.50			ug/L	30.00		102	75-120			
Surrogate: Dibromofluoromethane	28.47			ug/L	30.00		94.9	85-115			
Surrogate: 1,2-Dichloroethane-d4	29.87			ug/L	30.00		99.6	70-120			
Surrogate: Toluene-d8	31.12			ug/L	30.00		104	85-120			
Matrix Spike (5F15917-MS2)		Source: 150			pared & An						
Acetone	223	5.00	20.0	ug/L	200.0	31.4	95.7	40-140			
Benzene	106	0.500	2.00	ug/L	100.0	ND	106	80-120			
Bromodichloromethane	99.9	0.500	2.00	ug/L	100.0	ND	99.9	75-120			
Bromoform	98.4	0.500	2.00	ug/L	100.0	ND	98.4	70-130			
Bromomethane	96.3	1.00	4.00	ug/L	100.0	ND	96.3	30-145			
2-Butanone	175	5.00	20.0	ug/L	200.0	ND	87.5	30-150			
Carbon disulfide	108	0.500	2.00	ug/L	100.0	ND	108	35-160			
Carbon tetrachloride	107	0.500	2.00	ug/L	100.0	ND	107	65-140			
Chlorobenzene	110	0.500	2.00	ug/L	100.0	ND	110	80-120			
Chloroethane	107	1.00	4.00	ug/L	100.0	ND	107	60-135			
Chloroform	95.9	0.500	2.00	ug/L	100.0	ND	95.9	65-135			
Chloromethane	93.8	0.500	2.00	ug/L	100.0	ND	93.8	40-125			
Cyclohexane	116	0.500	2.00	ug/L	100.0	ND	116	60-130			
Dibromochloromethane	112	0.500	2.00	ug/L	100.0	ND	112	60-135			
		0.200	2.00	0		- 12		100			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported:

06/29/2015 15:37

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

			Reporting		Spike	Source		/orcec		KrD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
Matrix Spike (5F15917-MS2)		Source: 150	6117-07	Prep	ared & Ar	nalyzed: 06	/15/2015				
1,2-Dibromo-3-chloropropane	94.9	1.00	4.00	ug/L	100.0	ND	94.9	50-130			D
1,2-Dibromoethane (EDB)	104	0.500	2.00	ug/L	100.0	ND	104	80-120			D
1,2-Dichlorobenzene	108	0.500	2.00	ug/L	100.0	ND	108	70-120			D
1,3-Dichlorobenzene	110	0.500	2.00	ug/L	100.0	ND	110	75-125			D
1,4-Dichlorobenzene	107	0.500	2.00	ug/L	100.0	ND	107	75-125			D
Dichlorodifluoromethane	83.9	1.00	4.00	ug/L	100.0	ND	83.9	30-155			D
1,1-Dichloroethane	101	0.500	2.00	ug/L	100.0	ND	101	70-135			D
1,2-Dichloroethane	96.4	0.500	2.00	ug/L	100.0	ND	96.4	70-130			D
1,1-Dichloroethene	104	0.500	2.00	ug/L	100.0	ND	104	70-130			D
cis-1,2-Dichloroethene	107	0.500	2.00	ug/L	100.0	ND	107	70-125			D
rans-1,2-Dichloroethene	104	0.500	2.00	ug/L	100.0	ND	104	60-140			D
,2-Dichloropropane	105	0.500	2.00	ug/L	100.0	ND	105	75-125			D
sis-1,3-Dichloropropene	104	0.500	2.00	ug/L	100.0	ND	104	70-130			D
rans-1,3-Dichloropropene	104	0.500	2.00	ug/L	100.0	ND	104	55-140			D
Ethylbenzene	109	0.500	2.00	ug/L	100.0	ND	109	75-125			D
-Hexanone	209	2.50	10.0	ug/L	200.0	ND	104	55-130			D
sopropylbenzene	119	0.500	2.00	ug/L	100.0	ND	119	75-125			D
Methylene chloride	103	1.00	4.00	ug/L	100.0	ND	103	55-140			D
Methyl Acetate	94.4	1.00	4.00	ug/L	100.0	ND	94.4	55-150			D
Methylcyclohexane	126	0.500	2.00	ug/L	100.0	ND	126	60-125			*DQX
4-Methyl-2-pentanone	198	2.50	10.0	ug/L	200.0	ND	99.0	60-135			D
Methyl t-Butyl Ether	100	0.500	2.00	ug/L	100.0	ND	100	65-125			D
Styrene	114	0.500	2.00	ug/L	100.0	ND	114	65-135			D
,1,2,2-Tetrachloroethane	92.7	0.500	2.00	ug/L	100.0	ND	92.7	65-130			D
Tetrachloroethene	121	0.500	2.00	ug/L	100.0	ND	121	45-150			D
Toluene	109	0.500	2.00	ug/L	100.0	ND	109	75-120			D
,2,4-Trichlorobenzene	113	0.500	2.00	ug/L	100.0	ND	113	65-135			D
,1,2-Trichloroethane	103	0.500	2.00	ug/L	100.0	ND	103	75-125			D
,1,1-Trichloroethane	99.2	0.500	2.00	ug/L	100.0	ND	99.2	65-130			D
Trichloroethene	103	0.500	2.00	ug/L	100.0	ND	103	70-125			D

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 15:37

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

			Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
Matrix Spike (5F15917-MS2)		Source: 150	6117-07	Prep	oared & Aı	nalyzed: 06	5/15/2015				
Trichlorofluoromethane	93.5	1.00	4.00	ug/L	100.0	ND	93.5	60-145			Г
1,1,2-Trichloro-1,2,2-trifluoroethane	106	1.00	4.00	ug/L	100.0	ND	106	60-130			Г
Vinyl chloride	118	0.500	2.00	ug/L	100.0	ND	118	50-145			Б
m,p-Xylene	224	1.00	4.00	ug/L	200.0	ND	112	75-130			Ε
o-Xylene	108	0.500	2.00	ug/L	100.0	ND	108	80-120			Ε
Surrogate: Bromofluorobenzene	30.72			ug/L	30.00		102	75-120			
Surrogate: Dibromofluoromethane	29.30			ug/L	30.00		97.7	85-115			
Surrogate: 1,2-Dichloroethane-d4	29.29			ug/L	30.00		97.6	70-120			
Surrogate: Toluene-d8	30.41			ug/L	30.00		101	85-120			
Matrix Spike Dup (5F15917-MSD2)		Source: 150	6117-07	Prep	oared & Aı	nalyzed: 06	5/15/2015				
Acetone	213	5.00	20.0	ug/L	200.0	31.4	91.0	40-140	4.25	30	Г
Benzene	108	0.500	2.00	ug/L	100.0	ND	108	80-120	2.20	30	Ε
Bromodichloromethane	99.1	0.500	2.00	ug/L	100.0	ND	99.1	75-120	0.828	30	Ε
Bromoform	97.3	0.500	2.00	ug/L	100.0	ND	97.3	70-130	1.17	30	Ε
Bromomethane	89.3	1.00	4.00	ug/L	100.0	ND	89.3	30-145	7.55	30	Г
2-Butanone	165	5.00	20.0	ug/L	200.0	ND	82.5	30-150	5.80	30	Б
Carbon disulfide	109	0.500	2.00	ug/L	100.0	ND	109	35-160	1.40	30	Б
Carbon tetrachloride	108	0.500	2.00	ug/L	100.0	ND	108	65-140	0.882	30	Б
Chlorobenzene	114	0.500	2.00	ug/L	100.0	ND	114	80-120	3.43	30	Б
Chloroethane	109	1.00	4.00	ug/L	100.0	ND	109	60-135	1.91	30	Б
Chloroform	97.3	0.500	2.00	ug/L	100.0	ND	97.3	65-135	1.48	30	Б
Chloromethane	94.0	0.500	2.00	ug/L	100.0	ND	94.0	40-125	0.248	30	Б
Cyclohexane	110	0.500	2.00	ug/L	100.0	ND	110	60-130	5.17	30	Б
Dibromochloromethane	114	0.500	2.00	ug/L	100.0	ND	114	60-135	1.96	30	Б
1,2-Dibromo-3-chloropropane	90.4	1.00	4.00	ug/L	100.0	ND	90.4	50-130	4.79	30	Б
1,2-Dibromoethane (EDB)	103	0.500	2.00	ug/L	100.0	ND	103	80-120	0.369	30	D
1,2-Dichlorobenzene	108	0.500	2.00	ug/L	100.0	ND	108	70-120	0.441	30	Г
1,3-Dichlorobenzene	110	0.500	2.00	ug/L	100.0	ND	110	75-125	0.137	30	Г
1,4-Dichlorobenzene	108	0.500	2.00	ug/L	100.0	ND	108	75-125	1.40	30	Б
Dichlorodifluoromethane	73.5	1.00	4.00	ug/L	100.0	ND	73.5	30-155	13.3	30	Б
1,1-Dichloroethane	104	0.500	2.00	ug/L	100.0	ND	104	70-135	2.40	30	Г

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reporting

Reported: 06/29/2015 15:37

RPD

Volatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Source

%REC

			Reporting		эрікс	Source		/0KEC		KLD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F15917											
Matrix Spike Dup (5F15917-MSD2)		Source: 150	6117-07	Prep	oared & Ar		5/15/2015				
1,2-Dichloroethane	96.0	0.500	2.00	ug/L	100.0	ND	96.0	70-130	0.382	30	D
1,1-Dichloroethene	105	0.500	2.00	ug/L	100.0	ND	105	70-130	0.979	30	D
cis-1,2-Dichloroethene	109	0.500	2.00	ug/L	100.0	ND	109	70-125	1.87	30	D
trans-1,2-Dichloroethene	106	0.500	2.00	ug/L	100.0	ND	106	60-140	2.42	30	D
1,2-Dichloropropane	105	0.500	2.00	ug/L	100.0	ND	105	75-125	0.109	30	D
cis-1,3-Dichloropropene	103	0.500	2.00	ug/L	100.0	ND	103	70-130	0.407	30	D
trans-1,3-Dichloropropene	103	0.500	2.00	ug/L	100.0	ND	103	55-140	0.918	30	D
Ethylbenzene	113	0.500	2.00	ug/L	100.0	ND	113	75-125	2.98	30	D
2-Hexanone	196	2.50	10.0	ug/L	200.0	ND	98.2	55-130	6.11	30	D
Isopropylbenzene	122	0.500	2.00	ug/L	100.0	ND	122	75-125	2.51	30	D
Methylene chloride	103	1.00	4.00	ug/L	100.0	ND	103	55-140	0.538	30	D
Methyl Acetate	90.1	1.00	4.00	ug/L	100.0	ND	90.1	55-150	4.65	30	D
Methylcyclohexane	119	0.500	2.00	ug/L	100.0	ND	119	60-125	5.79	30	DQX
4-Methyl-2-pentanone	186	2.50	10.0	ug/L	200.0	ND	92.8	60-135	6.42	30	D
Methyl t-Butyl Ether	97.3	0.500	2.00	ug/L	100.0	ND	97.3	65-125	3.07	30	D
Styrene	119	0.500	2.00	ug/L	100.0	ND	119	65-135	3.86	30	D
1,1,2,2-Tetrachloroethane	90.4	0.500	2.00	ug/L	100.0	ND	90.4	65-130	2.52	30	D
Tetrachloroethene	124	0.500	2.00	ug/L	100.0	ND	124	45-150	2.33	30	D
Toluene	111	0.500	2.00	ug/L	100.0	ND	111	75-120	2.24	30	D
1,2,4-Trichlorobenzene	107	0.500	2.00	ug/L	100.0	ND	107	65-135	5.45	30	D
1,1,2-Trichloroethane	104	0.500	2.00	ug/L	100.0	ND	104	75-125	0.459	30	D
1,1,1-Trichloroethane	99.5	0.500	2.00	ug/L	100.0	ND	99.5	65-130	0.309	30	D
Trichloroethene	103	0.500	2.00	ug/L	100.0	ND	103	70-125	0.271	30	D
Trichlorofluoromethane	88.2	1.00	4.00	ug/L	100.0	ND	88.2	60-145	5.91	30	D
1,1,2-Trichloro-1,2,2-trifluoroethane	99.5	1.00	4.00	ug/L	100.0	ND	99.5	60-130	6.56	30	D
Vinyl chloride	114	0.500	2.00	ug/L	100.0	ND	114	50-145	3.06	30	D
m,p-Xylene	229	1.00	4.00	ug/L	200.0	ND	115	75-130	2.07	30	D
o-Xylene	109	0.500	2.00	ug/L	100.0	ND	109	80-120	1.60	30	D
Surrogate: Bromofluorobenzene	30.61			ug/L	30.00		102	75-120			
Surrogate: Dibromofluoromethane Surrogate: 1,2-Dichloroethane-d4	29.53 29.84			ug/L ug/L	30.00 30.00		98.4 99.5	85-115 70-120			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

Project: Tyson Chicken
Project Number: EAE_Tyson

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control}$

Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5F15917

Matrix Spike Dup (5F15917-MSD2)	Source: 1506117-07	Prep	oared & Ana	lyzed: 06/15/2015		
Surrogate: Toluene-d8	30.54	ug/L	30.00	102	85-120	

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 41 of 53

Project: Tyson Chicken 225 Schilling Circle, Suite 400 Project Number: EAE_Tyson Hunt Valley MD, 21031

Project Manager: Jim Hulbert 06/29/2015 15:37

%REC

Source

Reported:

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Empirical Laboratories, LLC

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F18004											
Blank (5F18004-BLK1)				Prepa	ared: 06/2	2/2015 An	alyzed: 06/	25/2015			
Acenaphthene	ND	83.3	333	ug/Kg wet							
Acenaphthylene	ND	83.3	333	ug/Kg wet							
Acetophenone	ND	83.3	333	ug/Kg wet							
Anthracene	ND	83.3	333	ug/Kg wet							
Atrazine	ND	83.3	333	ug/Kg wet							
Benzaldehyde	ND	83.3	333	ug/Kg wet							
Benzo(a)anthracene	ND	83.3	333	ug/Kg wet							
Benzo(a)pyrene	ND	83.3	333	ug/Kg wet							
Benzo(b)fluoranthene	ND	83.3	333	ug/Kg wet							
Benzo(g,h,i)perylene	ND	83.3	333	ug/Kg wet							
Benzo(k)fluoranthene	ND	83.3	333	ug/Kg wet							
1,1-Biphenyl	ND	83.3	333	ug/Kg wet							
4-Bromophenyl-phenylether	ND	83.3	333	ug/Kg wet							
Butylbenzylphthalate	ND	83.3	333	ug/Kg wet							
Caprolactam	ND	83.3	333	ug/Kg wet							
Carbazole	ND	83.3	333	ug/Kg wet							
4-Chloro-3-methylphenol	ND	83.3	333	ug/Kg wet							
4-Chloroaniline	ND	83.3	333	ug/Kg wet							
Bis(2-chloroethoxy)methane	ND	83.3	333	ug/Kg wet							
Bis(2-chloroethyl)ether	ND	83.3	333	ug/Kg wet							
2,2'-Oxybis-1-chloropropane	ND	83.3	333	ug/Kg wet							
2-Chloronaphthalene	ND	83.3	333	ug/Kg wet							
2-Chlorophenol	ND	83.3	333	ug/Kg wet							
4-Chlorophenyl phenyl ether	ND	83.3	333	ug/Kg wet							
Chrysene	ND	83.3	333	ug/Kg wet							
Dibenz(a,h)anthracene	ND	83.3	333	ug/Kg wet							
Dibenzofuran	ND	83.3	333	ug/Kg wet							
Di-n-butylphthalate	ND	83.3	333	ug/Kg wet							
3,3'-Dichlorobenzidine	ND	83.3	333	ug/Kg wet							
2,4-Dichlorophenol	ND	83.3	333	ug/Kg wet							

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 42 of 53

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert Reported:

RPD

06/29/2015 15:37

Semivolatile Organic Compounds by GC/MS - Quality Control

${\bf Empirical\ Laboratories,\ LLC}$

Source

%REC

Reporting

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F18004											
Blank (5F18004-BLK1)				Prepa	ared: 06/2	2/2015 Ana	alyzed: 06/	25/2015			
Diethylphthalate	ND	83.3	333	ug/Kg wet							
2,4-Dimethylphenol	ND	333	1330	ug/Kg wet							
Dimethyl phthalate	ND	83.3	333	ug/Kg wet							
4,6-Dinitro-2-methylphenol	ND	833	3330	ug/Kg wet							
2,4-Dinitrophenol	ND	833	3330	ug/Kg wet							
2,4-Dinitrotoluene	ND	83.3	333	ug/Kg wet							
2,6-Dinitrotoluene	ND	83.3	333	ug/Kg wet							
Di-n-octylphthalate	ND	83.3	333	ug/Kg wet							
Bis(2-ethylhexyl)phthalate	ND	83.3	333	ug/Kg wet							
Fluoranthene	ND	83.3	333	ug/Kg wet							
Fluorene	ND	83.3	333	ug/Kg wet							
Hexachlorobenzene	ND	83.3	333	ug/Kg wet							
Hexachlorobutadiene	ND	83.3	333	ug/Kg wet							
Hexachlorocyclopentadiene	ND	83.3	333	ug/Kg wet							
Hexachloroethane	ND	83.3	333	ug/Kg wet							
Indeno(1,2,3-cd)pyrene	ND	83.3	333	ug/Kg wet							
Isophorone	ND	83.3	333	ug/Kg wet							
2-Methylnaphthalene	ND	83.3	333	ug/Kg wet							
2-Methylphenol	ND	83.3	333	ug/Kg wet							
4-Methylphenol	ND	83.3	333	ug/Kg wet							
Naphthalene	ND	83.3	333	ug/Kg wet							
4-Nitroaniline	ND	333	1330	ug/Kg wet							
3-Nitroaniline	ND	333	1330	ug/Kg wet							
2-Nitroaniline	ND	333	1330	ug/Kg wet							
Nitrobenzene	ND	83.3	333	ug/Kg wet							
4-Nitrophenol	ND	333	1330	ug/Kg wet							
2-Nitrophenol	ND	83.3	333	ug/Kg wet							
N-Nitrosodiphenylamine	ND	83.3	333	ug/Kg wet							
N-Nitroso-di-n-propylamine	ND	83.3	333	ug/Kg wet							
Pentachlorophenol	ND	333	1330	ug/Kg wet							

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported:

06/29/2015 15:37

Semivolatile Organic Compounds by GC/MS - Quality Control **Empirical Laboratories, LLC**

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5F18004											
Blank (5F18004-BLK1)				Prens	ared: 06/2	2/2015 An:	alyzed: 06/	25/2015			
Phenanthrene	ND	83.3	333	ug/Kg wet	irca. 00/2	2/2013 Am	aryzeu. 00/	23/2013			
Phenol	ND	83.3	333	ug/Kg wet							
Pyrene	ND	83.3									
2,4,6-Trichlorophenol	ND	83.3									
2,4,5-Trichlorophenol	ND	83.3		ug/Kg wet							
Surrogate: 2-Fluorobiphenyl	2648			ug/Kg wet	3333		79.4	45-105			
Surrogate: 2-Fluorophenol	4956			ug/Kg wet	6667		74.3	35-105			
Surrogate: Nitrobenzene-d5	2385			ug/Kg wet	3333		71.6	35-100			
Surrogate: Phenol-d6	5151			ug/Kg wet	6667		77.3	40-100			
Surrogate: Terphenyl-d14	2559			ug/Kg wet	3333		76.8	30-125			
Surrogate: 2,4,6-Tribromophenol	5719			ug/Kg wet	6667		85.8	35-125			
LCS (5F18004-BS1)				Prepa	ared: 06/2	2/2015 An	alyzed: 06/	25/2015			
Acenaphthene	3173	83.3	333	ug/Kg wet	3333		95.2	45-110			
Acenaphthylene	3073	83.3	333	ug/Kg wet	3333		92.2	45-105			
Acetophenone	2492	83.3	333	ug/Kg wet	3333		74.8	35-110			
Anthracene	3056	83.3	333	ug/Kg wet	3333		91.7	55-105			
Atrazine	2643	83.3	333	ug/Kg wet	3333		79.3	55-105			
Benzaldehyde	2232	83.3	333	ug/Kg wet	3333		66.9	10-160			
Benzo(a)anthracene	3087	83.3	333	ug/Kg wet	3333		92.6	50-110			
Benzo(a)pyrene	2982	83.3	333	ug/Kg wet	3333		89.5	50-110			
Benzo(b)fluoranthene	3046	83.3	333	ug/Kg wet	3333		91.4	45-115			
Benzo(g,h,i)perylene	3258	83.3	333	ug/Kg wet	3333		97.7	40-125			
Benzo(k)fluoranthene	3098	83.3	333	ug/Kg wet	3333		92.9	45-125			
1,1-Biphenyl	2613	83.3	333	ug/Kg wet	3333		78.4	45-110			
4-Bromophenyl-phenylether	3363	83.3	333	ug/Kg wet	3333		101	45-115			
Butylbenzylphthalate	2985	83.3	333	ug/Kg wet	3333		89.5	50-125			
Caprolactam	2672	83.3	333	ug/Kg wet	3333		80.2	50-110			
Carbazole	2978	83.3	333	ug/Kg wet	3333		89.3	45-115			
4-Chloro-3-methylphenol	6379	83.3	333	ug/Kg wet	6667		95.7	45-115			
4-Chloroaniline	2398	83.3	333	ug/Kg wet	3333		71.9	10-95			
Bis(2-chloroethoxy)methane	3019	83.3	333	ug/Kg wet	3333		90.6	45-110			
Bis(2-chloroethyl)ether	2821	83.3	333	ug/Kg wet	3333		84.6	40-105			
EMPIRICAL LABORATORIES, LLC	Work Order:	1506117	7 R ₌	port Date:	06/29/	2015					e 44 of 5

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

RPD

%REC

Semivolatile Organic Compounds by GC/MS - Quality Control **Empirical Laboratories, LLC**

Reporting

			Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F18004											
LCS (5F18004-BS1)				Prepa	red: 06/2	2/2015 Ana	ılyzed: 06/	25/2015			
2,2'-Oxybis-1-chloropropane	2580	83.3	333	ug/Kg wet	3333		77.4	20-115			
2-Chloronaphthalene	3027	83.3	333	ug/Kg wet	3333		90.8	45-105			
2-Chlorophenol	5854	83.3	333	ug/Kg wet	6667		87.8	45-105			
4-Chlorophenyl phenyl ether	3294	83.3	333	ug/Kg wet	3333		98.8	45-110			
Chrysene	3142	83.3	333	ug/Kg wet	3333		94.3	55-110			
Dibenz(a,h)anthracene	3317	83.3	333	ug/Kg wet	3333		99.5	40-125			
Dibenzofuran	3146	83.3	333	ug/Kg wet	3333		94.4	50-105			
Di-n-butylphthalate	3101	83.3	333	ug/Kg wet	3333		93.0	55-110			
3,3'-Dichlorobenzidine	2600	83.3	333	ug/Kg wet	3333		78.0	19-130			
2,4-Dichlorophenol	6198	83.3	333	ug/Kg wet	6667		93.0	45-110			
Diethylphthalate	3240	83.3	333	ug/Kg wet	3333		97.2	50-115			
2,4-Dimethylphenol	6424	333	1330	ug/Kg wet	6667		96.4	30-105			
Dimethyl phthalate	3312	83.3	333	ug/Kg wet	3333		99.4	50-110			
4,6-Dinitro-2-methylphenol	6433	833	3330	ug/Kg wet	6667		96.5	30-135			
2,4-Dinitrophenol	6030	833	3330	ug/Kg wet	6667		90.5	15-130			
2,4-Dinitrotoluene	3303	83.3	333	ug/Kg wet	3333		99.1	50-115			
2,6-Dinitrotoluene	3063	83.3	333	ug/Kg wet	3333		91.9	50-110			
Di-n-octylphthalate	2797	83.3	333	ug/Kg wet	3333		83.9	40-130			
Bis(2-ethylhexyl)phthalate	2974	83.3	333	ug/Kg wet	3333		89.2	45-125			
Fluoranthene	3064	83.3	333	ug/Kg wet	3333		91.9	55-115			
Fluorene	3121	83.3	333	ug/Kg wet	3333		93.6	50-110			
Hexachlorobenzene	3218	83.3	333	ug/Kg wet	3333		96.5	45-120			
Hexachlorobutadiene	3396	83.3	333	ug/Kg wet	3333		102	30-110			
Hexachlorocyclopentadiene	2078	83.3	333	ug/Kg wet	3333		62.3	10-110			
Hexachloroethane	2617	83.3	333	ug/Kg wet	3333		78.5	35-110			
Indeno(1,2,3-cd)pyrene	2950	83.3	333	ug/Kg wet	3333		88.5	40-120			
Isophorone	2534	83.3	333	ug/Kg wet	3333		76.0	45-110			
2-Methylnaphthalene	2799	83.3	333	ug/Kg wet	3333		84.0	40-110			
2-Methylphenol	5878	83.3	333	ug/Kg wet	6667		88.2	40-105			
1-Methylphenol	6104	83.3	333	ug/Kg wet	6667		91.6	40-105			

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

Semivolatile Organic Compounds by GC/MS - Quality Control **Empirical Laboratories, LLC**

Analyta	Damit	MDI	Reporting	Heita	Spike	Source	0/DEC	%REC	מתם	RPD Limit	Notes
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F18004											
LCS (5F18004-BS1)						2/2015 Ana	alyzed: 06/				
Naphthalene	2877	83.3	333	ug/Kg wet	3333		86.3	40-105			
4-Nitroaniline	3115	333	1330	ug/Kg wet	3333		93.5	35-115			
3-Nitroaniline	2581	333	1330	ug/Kg wet	3333		77.4	25-110			
2-Nitroaniline	2977	333	1330	ug/Kg wet	3333		89.3	45-120			
Vitrobenzene	2723	83.3	333	ug/Kg wet	3333		81.7	40-115			
-Nitrophenol	6396	333	1330	ug/Kg wet	6667		95.9	15-140			
-Nitrophenol	5969	83.3	333	ug/Kg wet	6667		89.5	40-110			
J-Nitrosodiphenylamine	2622	83.3	333	ug/Kg wet	3333		78.7	50-115			
J-Nitroso-di-n-propylamine	2908	83.3	333	ug/Kg wet	3333		87.2	40-115			
entachlorophenol	6867	333	1330	ug/Kg wet	6667		103	25-120			
henanthrene	3069	83.3	333	ug/Kg wet	3333		92.1	50-110			
henol	5398	83.3	333	ug/Kg wet	6667		81.0	40-100			
yrene	2784	83.3	333	ug/Kg wet	3333		83.5	45-125			
,4,6-Trichlorophenol	6698	83.3	333	ug/Kg wet	6667		100	45-110			
4,5-Trichlorophenol	6862	83.3	333	ug/Kg wet	6667		103	50-110			
urrogate: 2-Fluorobiphenyl	2623			ug/Kg wet	3333		78.7	45-105			
urrogate: 2-Fluorophenol	4706			ug/Kg wet	6667		70.6	35-105			
urrogate: Nitrobenzene-d5	2385			ug/Kg wet	3333		71.6	35-100			
urrogate: Phenol-d6	4837			ug/Kg wet	6667		72.6	40-100			
urrogate: Terphenyl-d14 urrogate: 2,4,6-Tribromophenol	2415 6229			ug/Kg wet ug/Kg wet	3333 6667		72.5 93.4	30-125 35-125			
•	0227					N/2015 A					
CS Dup (5F18004-BSD1) cenaphthene	2971	83.3	333	ug/Kg wet	3333	2/2015 Ana	alyzed: 06/ 89.1	45-110	6.55	30	
cenaphthylene	2876	83.3		ug/Kg wet	3333		86.3	45-105	6.61	30	
cetophenone	2321	83.3		ug/Kg wet	3333		69.6	35-110	7.10	30	
	2801	83.3		ug/Kg wet	3333		84.0	55-105	8.71	30	
nthracene											
trazine	2455	83.3		ug/Kg wet	3333		73.7	55-105	7.35	30	
enzaldehyde	2060	83.3		ug/Kg wet	3333		61.8	10-160	8.01	30	
enzo(a)anthracene	2877	83.3		ug/Kg wet	3333		86.3	50-110	7.04	30	
enzo(a)pyrene	2810	83.3		ug/Kg wet	3333		84.3	50-110	5.94	30	
enzo(b)fluoranthene	2857	83.3		ug/Kg wet	3333		85.7	45-115	6.39	30	
Benzo(g,h,i)perylene	3039	83.3	333	ug/Kg wet	3333		91.2	40-125	6.94	30	
EMPIRICAL LABORATORIES, LLC	Work Order:	1506117	7 Pa	port Date:	06/29/2	2015					e 46 of 5

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031 Project: Tyson Chicken

Project Number: EAE_Tyson Project Manager: Jim Hulbert

Reported: 06/29/2015 15:37

Semivolatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F18004											
LCS Dup (5F18004-BSD1)					ared: 06/2	2/2015 An	alyzed: 06/	25/2015			
Benzo(k)fluoranthene	2888	83.3	333	ug/Kg wet	3333		86.6	45-125	7.02	30	
,1-Biphenyl	2432	83.3	333	ug/Kg wet	3333		72.9	45-110	7.18	30	
l-Bromophenyl-phenylether	3097	83.3	333	ug/Kg wet	3333		92.9	45-115	8.25	30	
Butylbenzylphthalate	2740	83.3	333	ug/Kg wet	3333		82.2	50-125	8.54	30	
Caprolactam	2419	83.3	333	ug/Kg wet	3333		72.6	50-110	9.92	30	
Carbazole	2725	83.3	333	ug/Kg wet	3333		81.8	45-115	8.87	30	
-Chloro-3-methylphenol	5838	83.3	333	ug/Kg wet	6667		87.6	45-115	8.84	30	
-Chloroaniline	2319	83.3	333	ug/Kg wet	3333		69.6	10-95	3.35	30	
Bis(2-chloroethoxy)methane	2714	83.3	333	ug/Kg wet	3333		81.4	45-110	10.6	30	
Bis(2-chloroethyl)ether	2560	83.3	333	ug/Kg wet	3333		76.8	40-105	9.69	30	
2,2'-Oxybis-1-chloropropane	2368	83.3	333	ug/Kg wet	3333		71.0	20-115	8.57	30	
2-Chloronaphthalene	2811	83.3	333	ug/Kg wet	3333		84.3	45-105	7.39	30	
2-Chlorophenol	5404	83.3	333	ug/Kg wet	6667		81.1	45-105	7.99	30	
-Chlorophenyl phenyl ether	3005	83.3	333	ug/Kg wet	3333		90.2	45-110	9.16	30	
Chrysene	2968	83.3	333	ug/Kg wet	3333		89.0	55-110	5.70	30	
Dibenz(a,h)anthracene	3108	83.3	333	ug/Kg wet	3333		93.2	40-125	6.51	30	
Dibenzofuran	2925	83.3	333	ug/Kg wet	3333		87.8	50-105	7.27	30	
Di-n-butylphthalate	2885	83.3	333	ug/Kg wet	3333		86.5	55-110	7.23	30	
3,3'-Dichlorobenzidine	2584	83.3	333	ug/Kg wet	3333		77.5	19-130	0.623	30	
2,4-Dichlorophenol	5662	83.3	333	ug/Kg wet	6667		84.9	45-110	9.03	30	
Diethylphthalate	3073	83.3	333	ug/Kg wet	3333		92.2	50-115	5.27	30	
2,4-Dimethylphenol	5864	333	1330	ug/Kg wet	6667		88.0	30-105	9.11	30	
Dimethyl phthalate	3083	83.3	333	ug/Kg wet	3333		92.5	50-110	7.17	30	
4,6-Dinitro-2-methylphenol	6047	833	3330	ug/Kg wet	6667		90.7	30-135	6.18	30	
2,4-Dinitrophenol	5660	833	3330	ug/Kg wet	6667		84.9	15-130	6.33	30	
2,4-Dinitrotoluene	3068	83.3	333	ug/Kg wet	3333		92.0	50-115	7.38	30	
2,6-Dinitrotoluene	2920	83.3	333	ug/Kg wet	3333		87.6	50-110	4.79	30	
Di-n-octylphthalate	2605	83.3	333	ug/Kg wet	3333		78.2	40-130	7.10	30	
Bis(2-ethylhexyl)phthalate	2782	83.3	333	ug/Kg wet	3333		83.5	45-125	6.68	30	
Fluoranthene	2857	83.3	333	ug/Kg wet	3333		85.7	55-115	6.97	30	

EMPIRICAL LABORATORIES, LLC

Work Order: 1506117

Project Number: EAE_Tyson
Project Manager: Jim Hulbert

225 Schilling Circle, Suite 400 Hunt Valley MD, 21031

Reported: 06/29/2015 15:37

RPD

%REC

Source

Semivolatile Organic Compounds by GC/MS - Quality Control Empirical Laboratories, LLC

Reporting

			Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F18004											
LCS Dup (5F18004-BSD1)				Prepa	red: 06/2	2/2015 Ana	alyzed: 06/	25/2015			
Fluorene	2934	83.3	333	ug/Kg wet	3333		88.0	50-110	6.18	30	
Hexachlorobenzene	3000	83.3	333	ug/Kg wet	3333		90.0	45-120	7.02	30	
Hexachlorobutadiene	3045	83.3	333	ug/Kg wet	3333		91.3	30-110	10.9	30	
Hexachlorocyclopentadiene	1905	83.3	333	ug/Kg wet	3333		57.1	10-110	8.70	30	
Hexachloroethane	2409	83.3	333	ug/Kg wet	3333		72.3	35-110	8.30	30	
indeno(1,2,3-cd)pyrene	2759	83.3	333	ug/Kg wet	3333		82.8	40-120	6.69	30	
sophorone	2287	83.3	333	ug/Kg wet	3333		68.6	45-110	10.2	30	
2-Methylnaphthalene	2567	83.3	333	ug/Kg wet	3333		77.0	40-110	8.64	30	
2-Methylphenol	5518	83.3		ug/Kg wet	6667		82.8	40-105	6.33	30	
4-Methylphenol	5642	83.3		ug/Kg wet	6667		84.6	40-105	7.86	30	
Naphthalene	2622	83.3		ug/Kg wet	3333		78.7	40-105	9.27		
•										30	
-Nitroaniline	2882	333		ug/Kg wet	3333		86.5	35-115	7.77	30	
-Nitroaniline	2582	333		ug/Kg wet	3333		77.5	25-110	0.0344	30	
-Nitroaniline	2831	333	1330	ug/Kg wet	3333		84.9	45-120	5.05	30	
Nitrobenzene	2434	83.3	333	ug/Kg wet	3333		73.0	40-115	11.2	30	
-Nitrophenol	5854	333	1330	ug/Kg wet	6667		87.8	15-140	8.86	30	
-Nitrophenol	5457	83.3	333	ug/Kg wet	6667		81.8	40-110	8.97	30	
N-Nitrosodiphenylamine	2430	83.3	333	ug/Kg wet	3333		72.9	50-115	7.62	30	
N-Nitroso-di-n-propylamine	2725	83.3	333	ug/Kg wet	3333		81.8	40-115	6.48	30	
Pentachlorophenol	6394	333	1330	ug/Kg wet	6667		95.9	25-120	7.14	30	
Phenanthrene	2850	83.3	333	ug/Kg wet	3333		85.5	50-110	7.43	30	
Phenol	5005	83.3	333	ug/Kg wet	6667		75.1	40-100	7.56	30	
Pyrene	2593	83.3		ug/Kg wet	3333		77.8	45-125	7.08	30	
,4,6-Trichlorophenol	6244	83.3		ug/Kg wet	6667		93.7	45-110	7.01	30	
2,4,5-Trichlorophenol	6523	83.3		ug/Kg wet	6667		97.8	50-110	5.07	30	
*		05.5	333				91.0		5.07	50	
'urrogate: 2-Fluorobiphenyl	2415			ug/Kg wet	3333		72.4	45-105			
Surrogate: 2-Fluorophenol	4383			ug/Kg wet	6667		65.7	35-105			
Surrogate: Nitrobenzene-d5	2144			ug/Kg wet	3333		64.3	35-100			
Surrogate: Phenol-d6	4489			ug/Kg wet	6667		67.3	40-100			
Surrogate: Terphenyl-d14	2253			ug/Kg wet	3333		67.6	30-125			
Surrogate: 2,4,6-Tribromophenol	5802			ug/Kg wet	6667		87.0	35-125			

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 48 of 53

EA Engineering, Science, and Technology, Inc.

Project: Tyson Chicken

225 Schilling Circle, Suite 400Project Number: EAE_TysonReported:Hunt Valley MD, 21031Project Manager: Jim Hulbert06/29/2015 15:37

Notes and Definitions

X Indicates a potential positive bias on a reported concentration due to an ICV or CCV exceeding the upper control limit on the high side.

U Analyte included in the analysis, but not detected

M Indicates that the sample matrix interfered with the quantitation of the analyte. In dual column analysis the result is reported from the

column with the lower concentration. In inorganics, it indicates that the parameters MDL/RL has been raised.

J Detected but below the Reporting Limit/Limit of Quantitation; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

D Data reported from a dilution

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

EMPIRICAL LABORATORIES, LLC Work Order: 1506117 Report Date: 06/29/2015 Page 49 of 53

1506117 sı	EMPIRICAL LABORATORIES, LLC - CHAIN C SHIP TO: 621 Mainstream Drive, Suite 270 • Nashville, TN 37228	EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD TO: 621 Mainstream Drive, Suite 270 • Nashville, TN 37228 • 877-345-1113 • (fax) 866-417-0548	ECORD x) 866-417-0548 26595	
Send Results to:	Send Invoice to:	Analysis Requirements:	Lab Use Only:	0 of
Name Lin Hulbert Name		B	VOA Headspace Y	z ge 5
Company EA	/	9 E	Field Filtered Y	z Z
Address 225 5ch, Iling, C	A A	1 7 . 7 . 7 . 7 . 4 . 6 . 6 . 7 . 7	Correct Containers Y	z
City Hand Valley City City	を元	8.7 200 100 100 100 100 100 100 100 100 100	Discrepancies Y	z N N
21-1-1	•	2		-

			\sim		, ,																					_
Received for Laboratory by: (Signature)	Relinquished by: (Signature)) (Signatory)	Relinguished by (Signature)	Sample Kit Prep'd by (Signature)		•	10	01	08	ع	<i>o</i> 6	20	70	05	02 ```	01 العالم	Lab Use Only Dai	Project No./Name:	E-mail (Notbers & Lucs		пе <u>Ни</u>	Zip 3/5	City House Valley		Name Lim Hulbert	
ature)							,	1	1315	E.	08.5°	Oyko	0945	0440	Oars	6/10/150910	Date/Time Sampled		3. Was			ν I	┐	~l	'	
Date/Time Temperature Q	Date/Time Received By: (Signature)		Date Time Received By (Signature)	Date/Time Received By: (Signature)			TB-01	DO-6-01		GW-03 MS/MS)	55-05-4-5	SS-0S-0-1	55-04-4-5	55-04-0-1	55-01-4-5	SS-01-0-1	Sample Description	Sampler's (Signature):	E-mail	Fax	Phone	State, Zip	City	Address	Name	
کر	nature)		natura)	nature)			M	Bull	6-W	GW						OS	Sample Matrix						•			
											$\langle X \rangle$		× >	₹	$\langle $	X		57	100	5	a 1		3.5	70 101	DOC	_
					\vdash		X	×	×	/			_	<u> </u>		<i>/</i> ~		TPI V	} }{	<u>no</u> c	ta	<u>ነኝ</u> ፳٠	<u>7</u> WW			<u>*</u>
				REMARKS				,	X	X								D 355	oh	rc	γλ	ed	ملع	•		_
				AR																	(7	10 6	, סי	4	_
				Ś																						_
					\vdash																					
																										_
																										_
																										_
					Н											*				<u> </u>	<u>ი</u>	<u>ი</u>		ב כ	1 <	_
										/WEIMS	4					* Sectioners +	Comments	CAR #	7 810	# #	Containers Intact	Cust. Seals Intact	Discrepancies	Correct Containers	VOA Headspace	
Turnaround_	Date Shippe Shipped By	Cooler No	Page				2	(r)	Ц	0						_	No. of Bottles					۰		,		
	Date Shipped <u>し</u> げり Shipped By (かり	No. — of J	- of	Details:										,			Lab U: Contain								<	
10 days	Set of the least o	1	-	-													Lab Use Only Containers/Pres.						¥ گاج	2 2		5

II. EMPIRICAL LABORATORIES **COOLER RECEIPT FORM** Cooler Received/Opened On: 06/11/15 @0930 Work order# Tracking #_ (last 4 digits, FedEx) Courier: FEDEX Temperature of rep. sample or temp blank when opened: 1.9°C + correction factor(-0.0) If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES NO NÃ Were custody seals on outside of cooler? YES: MO...NA If yes, how many and where:_ Were the seals intact, signed, and dated correctly? Were custody papers inside cooler? I certify that I opened the cooler and answered questions 1-6 (initial/date) 7. Were custody seals on containers: and Intact Were these signed and dated correctly? YES...NO Packing material used? Bubble wrap Plastic by Peanuts Vermiculite Foam Insert Paper Other None Cooling process: Ice-pack lce (direct contact) Dry ice None 10. Did all containers arrive in good condition (unbroken)? ₿...NO...NA 11. Were all container labels complete (#, date, signed, pres., etc)? YES...NO...NA 12. Did all container labels and tags agree with custody papers? .NO...NA 13. a. Were VOA vials received? NO...NA b. Was there observable headspace present in any VOA vial (>5mm-6mm)? 14. Was there a Trip Blank in this cooler (custody seals present/intact)?(YES)..NO...NA...Comments if multiple coolers, sequence #_ I certify that I unloaded the cooler and answered questions 7-14 (initial/date) 15. a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used? 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial/date) 17. Were custody papers properly filled out (ink, signed, etc)? .NO...NA 18. Did you sign the custody papers in the appropriate place? NO...NA 19. Were correct containers used for the analysis requested YES...NO...NA If not, PM notified?

21. Were there Non-Conformance issues at login? YES...NO)..NCR#

I certify that I entered this project into LIMS and answered questions 17-21 (initial/date)

III. EMPIRICAL LABORATORIES, LLC DATA ENTRY VERIFICATION FORM – PROJECT MANAGEMENT

Workorder#: <u>1506117</u>

	Verification Item	Yes	No	NA
1.	Cooler Receipt Form Issues reviewed and communicated to client	X		
2.	Element/ Project Screen/items verified to match the COC/CRF:			
a.	Client/Project	Χ		
b.	Comments requiring laboratory reminder?			X
c.	Client and/or Project Memo requiring laboratory reminder?			X
3.	Receipt Screen items verified to match the COC/CRF:			
a.	Received Date/Received By	X		
b.	Workorder Due Date	Χ		
C.	Package Due Date	Χ		
d.	TAT	Χ		
e.	SDG Identifier Populated	Χ		
4.	Sample Information verified against COC for each sample:			
a.	Name	Χ		
b.	QC Source	Χ		
C.	Matrix	Х		
d.	Sample Type	Χ		
e.	Sampled Date/Time (Correct Time Zone)	Χ		
f.	Work Analyses/Versions	Х		
g.	Sample Issues included in comments	Х		
h.	Unpreserved VOA holding time set to 7 days	Χ		
5.	Containers consistent with tests requested	Χ		
6.	Field data entered and matching COC, if applicable			Х
	I certify that I have performed a second check of the LIMS information against the COC to confirm accuracy (initial/date):	(SMG 6/12/201	5

Empirical Laboratories, LLC Certifications/Approvals (Revised 04/22/2015)

DoD ELAP QSM5.0, Certificate Number L2226

- Aqueous
- Non-aqueous
- Expires: 11/30/2015

State of Florida, Department of Health – NELAP, Lab ID: E87646

- Clean Water Act
- RCRA/CERCLA
- Expires: 06/30/2015

State of Georgia, Environmental Protection Agency - NELAP, Self Certification

• Expires: 06/30/2015

State of Illinois, Environmental Protection Agency - NELAP, Certificate Number: 003464

- Groundwater
- Solid and Hazardous Waste
- Expires: 09/13/2015

Commonwealth of Kentucky, Energy and Environment Cabinet - WWLCP, Laboratory Number: 98017

- Wastewater
- Expires: 12/31/2015

Commonwealth of Kentucky, Department of Environmental Protection - UST, Certificate Number: 77

- Aqueous
- Non-aqueous
- Expires: 06/30/2015

State of New Jersey, Department of Environmental Protection - NELAP Primary, Lab ID: TN473

- Water Pollution
- Solid and Hazardous Waste
- Expires: 06/30/2015

State of North Carolina, Department of Environment and Natural Resources - Certificate Number: 643

- Aqueous
- Non-aqueous
- Expires: 12/31/2015

State of North Dakota, Department of Health - NELAP, Certificate No.: R-204

- Aqueous
- Non-aqueous
- Expires: 06/30/2015

Commonwealth of Pennsylvania, Department of Environmental Protection - NELAP, Lab ID: 68-05374

- Aqueous
- Non-aqueous
- Expires: 10/31/2015

State of Texas, Commission on Environmental Quality - NELAP, Certificate Number: T104704307-15-11

- Aqueous
- Non-aqueous
- Expires: 12/31/2015

State of Utah, Department of Health - NELAP, Certificate Number: TN0042014-6

- Aqueous
- Non-aqueous
- Expires: 07/31/2015

Commonwealth of Virginia, Department of General Services - NELAP, Certificate Number: 7700, Lab ID: 460243

- Aqueous
- Non-aqueous
- Expires: 12/14/2015

State of Washington, Department of Ecology - NELAP, Lab ID: C934-15

- Groundwater
- Solid and Hazardous Waste
- Expires: 03/18/2016

	Salisbury MD 21801 Fred Grozinger, Laboratory Director (410) 546-1318		Chesapeake Labs, Inc. Report To:
Test Report	Suite 400 Hunt Valley, MD 21031	225 Schilling Circle	EA Engineering
	Plant Name:	Reporting Date:	Report #:
	EA Engineering	June 18, 2015	1506A-EAE

16.9	19.1	Pacul+	CO WAS	יייי דיייי דיייי
Colilert	Enterolert	Method	tion	Collection
E. coli , MPN/100ml	Enterococci, MPN/100ml	EA SW 02	EAS	Sample ID:
		Flag		
	1	Reporting Limits		
CA	CA	Analyst	Client	Ву
3:20 PM	3:20 PM	Time Analyzed	12:10 PM	Time
6/10/2015	6/10/2015	Date Analyzed	6/10/2015	Date
1.0	1.0	Result	SW 01	Discharge Point
Colilert	Enterolert	Method	tion	Collection
E. coli , MPN/100ml	Enterococci, MPN/100ml	W 01	EA SW 01	Sample ID:

		Flag		
1	,	Reporting Limits		
CA	CA	Analyst		Ву
3:20 FM	3:20 PM	Time Analyzed	11:58 AM	Time
6/10/2013	6/10/2015	Date Analyzed	6/10/2015	Date
16.9	19.1	Result	SW 02	Discharge Point
Colilert	Enterolert	Method	tion	Collection
E. coli , MPN/100ml	Enterococci, MPN/100ml	EA SW 02	EA S	Sample ID:

		Ву	Time		Discharge Point	Collection	Sample ID:
		Client	11:50 AM	6/10/2015	SW 03		EA SW 03
Flag	Reporting Limits	Analyst	Time Analyzed	Date Analyzed	Result	Method	W 03
	1	CA	3:20 PM	6/10/2015	103.1	Enterolert	Enterococci, MPN/100ml
		CA	3:20 PM	6/10/2015	261.3	Colilert	E. coli , MPN/100ml

Comments: Results valid only when an approval signature is present

EPA Lab #: MD00031

Standard Acronyms/Flags: ND=Not Detected at Reporting Limit; MS=Matrix Spike; D=Duplicate, B=Blank, S=Lab Fortified Blank

Approved by Fred Grozinger, Lab Director

Chain of Custody Record

Water Testing Labs of Maryland, Inc. Chesapeake Labs, Inc.

Page_

으

113 High Street Salisbury MD 21801

<u>D</u> CLIENT NAME: REQUESTED COMPLETION DATE: CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER: PROJECT ATTENTION: PROJECT #: DATE TEGENED BY CE RECEIVED BY: C SAMPLED BY: pH upon lab afrival g A Valle <u>7</u> THE TE EARST. WIN TIME MATRIX CODE * B ۶ あるの 3 ဗ უ <u>< 0</u> 0 12031 യ > ଅ വ :#0P င္ပ DATE/TIME: See Above DATE/TIME: 外国派と名 Discharge Point O Phone: 410-546-1318 PRESERV. pH: PRESERV.: CONTAINER: # 약 RELINQUISHED BY: SAMPLE SHIPPED VIA: UPS FED-EX COU RELINQUISHED BY ODFE = DIRETemperature:C HEND ح ANALYSIS REQUESTED COURIER Custody Intact Fax: 410-546-5028 CLIENT/OTHER Broken/Missing DATE/TIME: DATE/TIME: FIELD SERVICES COOLER# www.wtlmd.com **DSDS □** > r O пг A - AMBER GLASS
G - CLEAR GLASS
V - VOA VIAL
S - STERILE
O - OTHER ST – STORM WATER SW – SURFACE WATER DW - DRINKING WATER WW - WASTE WATER GW - GROUND WATER P - PLASTIC CONTAINER TYPE Comments: Lab#: REMARKS/ADDITIONAL INFORMATION In-house location: FOR LAB USE ONLY *MATRIX CODES 5 – NaOH/ZnAc, 4° 6 – Na₂S₂O₃, 4° 7 – 4° 1 – HCl, 4° 2 – H₂SO₄, 4° 3 – HNO₃, 4° 4 – NaOH, 4° 8 - none PRESERVATION S - SOIL SL - SLUDGE SD - SOLID P -- PRODUCT L-LIQUID A - AIR